
SimBiology®

User's Guide

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

SimBiology® User's Guide
© COPYRIGHT 2005–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
September 2005 Online only New for Version 1.0 (Release 14SP3+)
March 2006 Online only Updated for Version 1.0.1 (Release 2006a)
May 2006 Online only Updated for Version 2.0 (Release 2006a+)
September 2006 Online only Updated for Version 2.0.1 (Release 2006b)
March 2007 Online only Rereleased for Version 2.1.1 (Release 2007a)
September 2007 Online only Rereleased for Version 2.1.2 (Release 2007b)
October 2007 Online only Updated for Version 2.2 (Release 2007b+)
March 2008 Online only Updated for Version 2.3 (Release 2008a)
October 2008 Online only Updated for Version 2.4 (Release 2008b)
March 2009 Online only Updated for Version 3.0 (Release 2009a)
September 2009 Online only Updated for Version 3.1 (Release 2009b)
March 2010 Online only Updated for Version 3.2 (Release 2010a)
September 2010 Online only Updated for Version 3.3 (Release 2010b)
April 2011 Online only Updated for Version 3.4 (Release 2011a)
September 2011 Online only Updated for Version 4.0 (Release 2011b)
March 2012 Online only Updated for Version 4.1 (Release 2012a)
September 2012 Online only Updated for Version 4.2 (Release 2012b)
March 2013 Online only Updated for Version 4.3 (Release 2013a)
September 2013 Online only Updated for Version 4.3.1 (Release 2013b)
March 2014 Online only Updated for Version 5.0 (Release 2014a)
October 2014 Online only Updated for Version 5.1 (Release 2014b)
March 2015 Online only Updated for Version 5.2 (Release 2015a)
September 2015 Online only Updated for Version 5.3 (Release 2015b)
March 2016 Online only Updated for Version 5.4 (Release 2016a)
September 2016 Online only Updated for Version 5.5 (Release 2016b)
March 2017 Online only Updated for Version 5.6 (Release 2017a)
September 2017 Online only Updated for Version 5.7 (Release 2017b)
March 2018 Online only Updated for Version 5.8 (Release 2018a)
September 2018 Online only Updated for Version 5.8.1 (Release 2018b)
March 2019 Online only Updated for Version 5.8.2 (Release 2019a)

SimBiology Desktop
1

General Workflow . 1-2

SimBiology Desktop Navigation . 1-5

SimBiology Desktop Help and Tools . 1-10
Contextual Help . 1-10
Message Indicators . 1-11
Contextual Icons . 1-15
Graphical Context Menus . 1-17
Tools . 1-18

Keyboard Shortcuts for SimBiology Desktop 1-20
Shortcuts for the Diagram View . 1-20

Modeling Workflow . 1-22

Model Views . 1-25
Diagram View . 1-25
Table View . 1-47
Equations View . 1-49

Copying SimBiology Blocks . 1-54
Compartment Blocks . 1-54
Species Blocks . 1-54
Reaction Blocks . 1-54
Parameter Blocks . 1-55
Rule and Events Blocks . 1-55

Setting Preferences . 1-56

Libraries . 1-58
Kinetic Laws Library . 1-59

v

Contents

Units Library . 1-60
Unit Prefixes Library . 1-60
Blocks Library . 1-61

Analysis Workflow . 1-62

Task Editor . 1-65

Built-in Tasks . 1-68

Configuring Tasks . 1-72
Configuring Model-Related Settings 1-72
Configuring Simulation-Related Settings 1-73
Configuring Task-Specific Settings . 1-73

Running Tasks . 1-78
Configuring Live Plots . 1-78
Exploring Models . 1-81

External Data and Task Results . 1-85
External Data . 1-86
Task Results . 1-88

Modeling
2

What is a Model? . 2-2
Model Definition . 2-2
Expressions . 2-2
Quantities . 2-3
Model Hierarchy . 2-4
Representing a Model . 2-4

Species Object . 2-6
How Species Amounts Change During Simulations 2-6
Keeping a Species Amount Unchanged 2-6
Changing a Species Amount with a Reaction or Rule 2-7
Changing a Species Amount with a Rule When Species is Part of

a Reaction . 2-7

vi Contents

Keeping a Species Amount Unchanged When Species is Part of a
Reaction that Adds or Removes Mass 2-8

Definitions and Evaluations of Reactions 2-10
Writing Reaction Expressions . 2-10
Writing Reaction Rate Expressions Explicitly 2-11
Creating Reaction Rate Expressions Using Kinetic Law Objects

. 2-12
Examples of Creating Reaction Rates 2-13
How Reaction Rates Are Evaluated . 2-14
Viewing Equations for Reactions . 2-15

Definitions and Evaluations of Rules . 2-17
Overview . 2-17
Initial Assignment . 2-17
Repeated Assignment . 2-18
Algebraic Rules . 2-18
Repeated Assignment vs. Algebraic Rules 2-19
Rate Rules . 2-19
Evaluation Order of Rules . 2-19
Conservation of Amounts During Simulation 2-20
Writing Rule Expressions . 2-21
Considerations When Imposing Constraints 2-21
Rate Rule Examples . 2-22

Events . 2-30
Overview . 2-30
Event Triggers . 2-30
Event Functions . 2-31
Specifying Event Triggers . 2-31
Specifying Event Functions . 2-33
Simulation Solvers for Models Containing Events 2-34
How Events Are Evaluated . 2-34
Evaluation of Simultaneous Events . 2-36
Evaluation of Multiple Event Functions 2-37
When One Event Triggers Another Event 2-37
Cyclical Events . 2-38
Using Events to Address Discontinuities in Rule and Reaction

Rate Expressions . 2-38

Variants . 2-40
Creating Variants Programmatically 2-40
Creating Variants Graphically . 2-40

vii

Doses . 2-42
Representing Doses . 2-42
Creating Doses Programmatically . 2-43
Creating Doses Graphically . 2-44
Parameterized and Adaptive Doses . 2-44
Simulation Solvers for Models Containing Doses 2-46

Simulate Biological Variability of the Yeast G Protein Cycle
Using the Wild-Type and Mutant Strains 2-47

Create and Simulate a Model with a Custom Function 2-49
Overview . 2-49
Create a Custom Function . 2-51
Load the Example Model . 2-51
Add the Custom Function to the Example Model 2-52
Define a Rule to Change Parameter Value 2-52
Add an Event to Reset the Solver at a Discontinuity 2-52
Simulate the Modified Model . 2-53

View Model Equations . 2-57

Component Usage . 2-58
Species Usage . 2-58
Parameter Usage . 2-58
Compartment Usage . 2-59
Unit and UnitPrefix Usage . 2-59
Abstract Kinetic Law Usage . 2-59

Evaluation of Model Component Names in Expressions 2-61
Guidelines for Naming Model Components 2-61
Guidelines for Referencing Names in Expressions 2-61
Precedence Rules for Evaluating Quantity Names 2-61

Structural Analysis
3

Model Verification . 3-2
What is Model Verification? . 3-2
When to Verify a Model . 3-2
Verifying That a Model Has No Warnings or Errors 3-3

viii Contents

Model Verification Example . 3-3

Conserved Moiety Determination . 3-4
Introduction to Moiety Conservation . 3-4
Algorithms for Conserved Cycle Calculations 3-4
More About . 3-6

Determining Conserved Moieties . 3-7

Determining the Adjacency Matrix for a Model 3-10
What Is an Adjacency Matrix? . 3-10
Retrieving an Adjacency Matrix for a Model 3-10

Determining the Stoichiometry Matrix for a Model 3-12
What Is a Stoichiometry Matrix? . 3-12
Retrieving a Stoichiometry Matrix for a Model 3-13

Selecting Absolute Tolerance and Relative Tolerance for
Simulation . 3-15

Algorithm . 3-15
Absolute Tolerance Scaling . 3-16

Troubleshooting Simulation Problems 3-18
Tips for Solving Simulation Problems 3-18
How to Change Solver Options and Simulation Options 3-20

Simulate Model of Glucose-Insulin Response with Different
Initial Conditions . 3-22

Simulation and Analysis
4

Model Simulation . 4-3

Deriving ODEs from Reactions . 4-5

Choosing a Simulation Solver . 4-8

SUNDIALS Solvers . 4-10

ix

Stochastic Solvers . 4-12
When to Use Stochastic Solvers . 4-12
Model Prerequisites for Simulating with a Stochastic Solver

. 4-12
What Happens During a Stochastic Simulation? 4-13
Stochastic Simulation Algorithm (SSA) 4-13
Explicit Tau-Leaping Algorithm . 4-13
Implicit Tau-Leaping Algorithm . 4-14
References . 4-15

Ensemble Runs of Stochastic Simulations 4-17
Running Ensemble Simulations . 4-17

Configuring Simulation Settings . 4-18

Create and Simulate a Simple Model . 4-19

Simulate the Yeast Heterotrimeric G Protein Cycle 4-24

Sensitivity Calculation . 4-29
About Calculating Sensitivities . 4-29
Model Requirements for Calculating Sensitivities 4-29
SUNDIALS as Default Solver . 4-30
Calculate Sensitivities using sbiosimulate or

SimFunctionSensitivity Object . 4-31
References . 4-32

Calculate Sensitivities . 4-33
Overview . 4-33
Load and Configure the Model for Sensitivity Analysis 4-34
Perform Sensitivity Analysis . 4-35
Extract and Plot Sensitivity Data . 4-35

Identify Important Network Components from an Apoptosis
Model Using Sensitivity Analysis . 4-37

Perform a Parameter Scan . 4-42

Nonlinear Mixed-Effects Modeling . 4-44
What Is a Nonlinear Mixed-Effects Model? 4-44
Nonlinear Mixed-Effects Modeling Workflow 4-46
Specify a Covariate Model . 4-47
Specify an Error Model . 4-49

x Contents

Maximum Likelihood Estimation . 4-49
Obtain the Fitting Status . 4-50

Nonlinear Regression . 4-52
What is Nonlinear Regression? . 4-52
Fitting Options in SimBiology . 4-53
Maximum Likelihood Estimation . 4-55
Fitting Workflow for sbiofit . 4-57

Supported Methods for Parameter Estimation 4-59

Error Models . 4-62

Progress Plot . 4-63
Progress Plot for Nonlinear Mixed-Effects Methods 4-63
Progress Plot for Nonlinear Regression Methods 4-65

Fit a One-Compartment Model to an Individual's PK Profile
. 4-72

Estimate Category-Specific PK Parameters for Multiple
Individuals . 4-80

Perform Hybrid Optimization Using sbiofit 4-93

Fit a Two-Compartment Model to PK Profiles of Multiple
Individuals . 4-98

Estimating the Bioavailability of a Drug 4-108

Accelerating Model Simulations and Analyses 4-116
What Is Acceleration? . 4-116
When to Accelerate . 4-116
Prerequisites for Accelerating Simulations and Analyses . . . 4-116
Accelerate Simulations Programmatically 4-117
Accelerate Simulations using SimBiology Desktop 4-119
Troubleshooting Accelerated Simulations 4-119

Noncompartmental Analysis . 4-121
Data . 4-121
Dosing . 4-121
Calculating NCA Parameters . 4-128

xi

Stochastic Simulation of Radioactive Decay 4-130

Pharmacokinetic Modeling
5

Pharmacokinetic Modeling Functionality 5-2
Overview . 5-2
How SimBiology Supports Pharmacokinetic Modeling 5-2
Pharmacokinetic Modeling Examples 5-4
Acknowledgements: Tobramycin Data Set 5-4

Importing Data — Supported Files and Data Types 5-6
Supported Files and Data Types . 5-6
Support for Importing NONMEM Formatted Files 5-6
Creating a Data File with SimBiology Definitions 5-11

Importing Data . 5-12
Import Data from Files . 5-12
Importing Data from NONMEM-Formatted Files 5-13
Other Resources for Importing Data 5-14

Import Data from a NONMEM-Format File Using the
SimBiology Desktop . 5-15

Create Pharmacokinetic Models . 5-22
Ways to Create or Import Pharmacokinetic Model 5-22
How SimBiology Models Represent Pharmacokinetic Models

. 5-22
Create a Pharmacokinetic Model Using the Command Line . . 5-24
Dosing Types . 5-26
Elimination Types . 5-29
Intercompartmental Clearance . 5-31
Unit Conversion for Imported Data . 5-32

Perform Data Fitting with PKPD Models 5-34

xii Contents

Creating Reaction Rates
A

Define Reaction Rates with Mass Action Kinetics A-2
Definition of Mass Action Kinetics . A-2
Zero-Order Reactions . A-2
First-Order Reactions . A-3
Second-Order Reactions . A-4
Reversible Mass Action . A-6

Define Reaction Rates with Enzyme Kinetics A-8
Simple Model for Single Substrate Catalyzed Reactions A-8
Enzyme Reactions with Differential Rate Equations A-8
Enzyme Reactions with Mass Action Kinetics A-10
Enzyme Reactions with Irreversible Henri-Michaelis-Menten

Kinetics . A-11

Models Used in Examples
B

Minimal Cascade Model for a Mitotic Oscillator B-2
Goldbeter Model . B-2
SimBiology Model with Rate Rules . B-5
SimBiology Model with Reactions . B-7
References . B-16

Model of the Yeast Heterotrimeric G Protein Cycle B-17
Background on G Protein Cycles . B-17
Modeling a G Protein Cycle . B-18
References . B-21

Model of M-Phase Control in Xenopus Oocyte Extracts B-22
M-Phase Control Model . B-22
M-Phase Control Equations . B-24
SimBiology Model with Rate and Algebraic Rules B-32
SimBiology Model with Reactions and Algebraic Rules B-38
References . B-55

xiii

SimBiology Desktop

• “General Workflow” on page 1-2
• “SimBiology Desktop Navigation” on page 1-5
• “SimBiology Desktop Help and Tools” on page 1-10
• “Keyboard Shortcuts for SimBiology Desktop” on page 1-20
• “Modeling Workflow” on page 1-22
• “Model Views” on page 1-25
• “Copying SimBiology Blocks” on page 1-54
• “Setting Preferences” on page 1-56
• “Libraries” on page 1-58
• “Analysis Workflow” on page 1-62
• “Task Editor” on page 1-65
• “Built-in Tasks” on page 1-68
• “Configuring Tasks” on page 1-72
• “Running Tasks” on page 1-78
• “External Data and Task Results” on page 1-85

1

General Workflow

The SimBiology desktop is a user interface with a set of integrated tools that are designed
to facilitate building, simulating, and analyzing models of dynamic systems. It provides an
interactive interface to build models and perform model analyses such as simulation,
sensitivity calculation, and parameter estimation. It lets you save your modeling work as a
SimBiology project that contains models, experimental data, model analysis tasks, and
task results.

1 SimBiology Desktop

1-2

A SimBiology model is a set of quantities and mathematical expressions that represent a
dynamic system. Expressions describe the mathematical relationships among quantities.
For details about SimBiology models, see “What is a Model?” on page 2-2.

The desktop lets you build such a dynamic model interactively. One approach is
connecting graphical blocks that represent modeling elements such as quantities and
expressions. Alternatively, you can build a model by entering expressions as strings such
as A –> B, where A and B are quantities participating in a transformation process.

Once you have a model, you can perform analyses on it. For instance, you can simulate
the model to see its dynamic behavior over a time course or explore biological variability
by simulating alternate scenarios. You can also perform parameter scans and sensitivity
analysis to investigate the influence of model parameters and initial conditions on model
behavior. To help you perform these analyses, the desktop provides built-in scripts with a
user interface called tasks.

You can import time-course data to the desktop. It provides tools for filtering and
visualizing the data. Once imported, you can use the data to estimate model parameters
or compare to simulation results.

As you build and analyze models, you can use built-in components from libraries. For
instance, the units library provides the unit functionality and has a collection of
predefined units that you can use in your model. To help you build models graphically, the
desktop provides the blocks library with blocks representing different modeling elements.
Custom elements can be added to any of these libraries. For details, see “Libraries” on
page 1-58.

As you work on models and analyses, the desktop continuously checks if there are any
errors or warnings and indicates them using message indicators on page 1-11. You can
hover over each indicator to see the corresponding warning or error message.

Preferences on page 1-56 let you customize model building and display settings, task
settings, and search options.

See Also

More About
• “SimBiology Desktop Navigation” on page 1-5

 See Also

1-3

• “SimBiology Desktop Help and Tools” on page 1-10
• “Setting Preferences” on page 1-56
• “Libraries” on page 1-58

1 SimBiology Desktop

1-4

SimBiology Desktop Navigation
To open the SimBiology desktop, enter simbiology at the MATLAB® command prompt
or select SimBiology on the Apps tab.

 SimBiology Desktop Navigation

1-5

1 SimBiology Desktop

1-6

The desktop provides options to help you build models, load data, explore data with plots,
and add tasks for model analyses. You can find these options in the toolstrip, content
panel, action menu, and address bar.

The toolstrip has the Home and View tabs. Depending on what is open, other context-
sensitive tabs appear. The content panel shows the contents of a project, available
libraries, and files that are recently open. Click the Content button to open the content
panel. The action menu contains additional functionality related to an open panel. For
instance, after opening a model, you can rename it or export it as an SBML file using the
corresponding options from the action menu. The address bar shows which panel is open.
You can use it to see the contents of a project and open them. Click an arrow in the
address to open other panels.

When you open data, a model, or a library, the desktop shows the related items in a panel
displayed in the workspace. For instance, the next figure shows a model open in the
Diagram view on page 1-25. Its graphical representation is displayed in a panel as
shown. If there are multiple panels such as other views of the model, each panel opens in
its own tab.

 SimBiology Desktop Navigation

1-7

In the content panel, Project contains a list of models, tasks, task results, and imported
data. To open an item in a project, double-click it. Models, task results, or data are
displayed in the workspace when opened. Opening a task displays it in the task editor on
page 1-65. Libraries on page 1-58 lists available units, unit prefixes, and blocks that
you can use while building a model.

Recent Files has a list of files that you recently opened, projects and data from
SimBiology examples, and projects from MATLAB Central File Exchange. If you open any
model or data file listed in the recent files, the desktop imports the model or data and
adds to the currently open project or to a new project.

1 SimBiology Desktop

1-8

https://www.mathworks.com/products/simbiology/model-examples.html

See Also

More About
• “General Workflow” on page 1-2
• “SimBiology Desktop Help and Tools” on page 1-10
• “Setting Preferences” on page 1-56

 See Also

1-9

SimBiology Desktop Help and Tools
While building models and configuring tasks, you can obtain information about modeling
elements and tasks from context-sensitive help. The desktop identifies errors and
warnings of a project using message indicators on page 1-11. In addition, you can check
the status bar to find out if the desktop is running a task or performing actions in the
background such as loading a project. As you construct models using building blocks on
page 1-61, you can use graphical context menus to edit block properties. The desktop
also provides various tools on page 1-18 for model building, error checking, and
searching.

Contextual Help
The desktop provides context-sensitive help with additional information about models and
tasks. For instance, while building models, you can get more information about quantities
and expressions and how to use them. Look for the information icon, , and hover over it
to see the help. To open the help as a separate dialog box, click Pin on the top right
corner.

1 SimBiology Desktop

1-10

Message Indicators
As you build models and configure tasks, the desktop identifies errors and warnings with
message indicators. The indicators are color-coded as follows.

• Red – one or more errors (and warnings) were detected.
• Orange – warnings, but no errors, were detected.
• Green – no errors or warnings were detected.

Click a square indicator, such as , to iterate through errors or warnings. Hover over a
dash indicator, such as , to see the specific error or warning message. Clicking a dash

 SimBiology Desktop Help and Tools

1-11

indicator highlights the relevant row in a table. The following figure shows the locations
of indicators in the desktop.

Message Indicators in Diagram View

For details about the diagram view and other views of a model, see “Model Views” on
page 1-25.

1 SimBiology Desktop

1-12

Message Indicators in Table View

For details about the table view and other views of a model, see “Model Views” on page 1-
25.

 SimBiology Desktop Help and Tools

1-13

Message Indicators in Task Editor

For details about the task editor, see “Task Editor” on page 1-65.

1 SimBiology Desktop

1-14

Contextual Icons
The desktop uses contextual icons to provide more information about quantities and
blocks. For instance, in the Diagram view, an icon is displayed above a block if it has an

error: . In the Table view, an icon is shown when a species is being dosed or a
quantity is being updated by an assignment rule.

For more information, hover the mouse over an icon. The following table has the complete
list of contextual icons and corresponding model views where they are displayed.

Icon Description Di
a
gr
a
m
Vi
e
w

T
a
b
l
e
V
i
e
w

E
q
u
at
io
ns
Vi
e
w

Block has an error. ✓ χ χ

 SimBiology Desktop Help and Tools

1-15

Icon Description Di
a
gr
a
m
Vi
e
w

T
a
b
l
e
V
i
e
w

E
q
u
at
io
ns
Vi
e
w

Block has a warning or is not being
used in a model.

✓ χ χ

Block is pinned to its current location
in the Diagram view.

✓ χ χ

Species amount, parameter value, or
compartment volume is set to be
constant. In other words, the
ConstantAmount, ConstantValue, or
ConstantCapacity property of the
species, parameter, or compartment
block is set to true.

✓ χ χ

Species block has the
BoundaryCondition property set to
true.

✓ χ χ

Species or event block is cloned. ✓ χ χ
Reaction block has the Reversible
property set to true.

✓ χ χ

Reaction, rule, or event block has the
Active property set to false, meaning
it does not participate in the model
simulation.

✓ χ χ

1 SimBiology Desktop

1-16

Icon Description Di
a
gr
a
m
Vi
e
w

T
a
b
l
e
V
i
e
w

E
q
u
at
io
ns
Vi
e
w

, Reaction-scoped parameter shadows
(i.e., takes precedence over) a model-
scoped parameter. The up arrow icon
indicates the parameter that
shadows. The down arrow icon
indicates the parameter that is being
shadowed.

✓ ✓ ✓

Species amount, parameter value, or
compartment volume (capacity) is
defined by an assignment rule.

✓ ✓ ✓

Species amount is being increased by
one or more doses. You must select
the desired dose(s) in a task to see
the dosing effects.

✓ ✓ ✓

Graphical Context Menus
While building models using blocks on page 1-43, you can configure block properties
using graphical context menus. Select a block and then hover over the graphical icons for
the context menu options.

 SimBiology Desktop Help and Tools

1-17

Tools
The desktop provides the following tools to help you build and analyze models.

Tool Purpose
MATLAB Code
Capture Tool

Displays the equivalent MATLAB code of the desktop actions.

Diagram
Overview

Shows the graphical representation of an entire model. Use this to pan
through a model and zoom in on a particular area.

Component
Palette

Lists of modeling elements such as quantities. You can drag and drop
these elements to a task when configuring it.

Task Data
Comparison

Compare results from fit tasks. For instance, you may want to run a fit
task multiple times using different optimization methods and compare
the final results using this tool. To compare results, first open the tool.
Then run a fit task, and save the task result. Then make changes to the
task and rerun it. The tool displays the parameter estimation quality
measures, such as log-likelihood, AIC, and BIC, for the last run and each
saved result.

Usages Shows all expressions and tasks that reference a parameter, species,
compartment, variant, dose, kinetic law, unit, unit prefix, or plot type.
Use the context menu of the corresponding entry in a table to show the
usages on page 2-58.

1 SimBiology Desktop

1-18

Tool Purpose
Errors and
Warnings

Displays the error and warnings of a model. To populate the list, select
Verify on the Model tab. When you run a task, SimBiology automatically
checks if there are any errors or warnings. Double-click an error or
warning to go to where it occurs.

Search Results Shows all instances of word or phrase in a model, kinetic law library,
unit and unit prefix library. To search, type in the search box above the
toolstrip.

Tip To search for any keyword or phrase on any open panel, click the
Search button on the Home or Model toolstrip. You can define specific
search criteria. For instance, you can specifically search for any
parameters whose names start with 'k1'.

Tip You can dock each tool to the desktop or undock as a separate dialog via the action
menu button on the top right corner of the tool. When docked, you can drag and
reposition the tool anywhere within the desktop.

See Also

More About
• “General Workflow” on page 1-2
• “SimBiology Desktop Navigation” on page 1-5
• “Setting Preferences” on page 1-56
• “Keyboard Shortcuts for SimBiology Desktop” on page 1-20

 See Also

1-19

Keyboard Shortcuts for SimBiology Desktop
On Macintosh platforms, use the command key instead of Ctrl.

Shortcuts for the Diagram View
Action Shortcut
Select all blocks Ctrl + A
Highlight block in the Table view on
page 1-47 or in the Browser on
page 1-31 if open

Ctrl + B

Copy block Ctrl + C
Duplicate block Ctrl + D
Paste block Ctrl + V
Print the diagram on page 1-26 Ctrl + P
Delete block Delete
Move block up by 5 pixels Up arrow
Move block down by 5 pixels Down arrow
Move block left by 5 pixels Left arrow
Move block right by 5 pixels Right arrow
Move block by 1 pixel Ctrl + any arrow key
Move block by 10 pixels Ctrl + Shift + any arrow key
Pan the diagram Shift + any arrow key
Zoom in Ctrl + +
Zoom out Ctrl + –
Toggle selection Ctrl + I
Select the next cloned block N
Select the previous cloned block P
Move one or more blocks in a
clockwise fashion

Shift + U

1 SimBiology Desktop

1-20

Action Shortcut
Move one or more blocks in an anti-
clockwise fashion

Ctrl + Shift + U

Expand one or more blocks by
increasing the distance between
them

Shift + E

Collapse one or more blocks by
decreasing the distance between
them

Ctrl + E

Show usages on page 1-18 of a
quantity

Ctrl + Shift + F

Show search bar Ctrl + F

See Also

More About
• “SimBiology Desktop Help and Tools” on page 1-10
• “Blocks Library” on page 1-61
• “Diagram View” on page 1-25
• “Table View” on page 1-47

 See Also

1-21

Modeling Workflow

A SimBiology model is a dynamic system described by a set of quantities and
mathematical expressions. There are three types of quantities: species, parameter, and
compartment. Three types of expressions describe the mathematical relationships among
quantities. The first type of expression is a reaction which describes a process such as a
transformation, transport, binding or unbinding of reactants and products. Another type
of expression is a class of assignment equations (rules) which define how quantity values
are initialized or updated. The third type is an event that describes a change in a quantity

1 SimBiology Desktop

1-22

value during simulation. For details about SimBiology models, see “What is a Model?” on
page 2-2.

Biological variability can be modeled using a modeling element called variant. A variant is
a collection of quantities with alternate values. Variants do not change the original
quantity values permanently. For instance, you can have a set of values for immunological
parameters of a healthy person represented by a variant and a different set of values for a
cancer patient represented by another variant. You can then simulate the model with each
variant to see the predictions for both cases.

An increase in a species amount or concentration due to an external stimulus such as an
oral or intravenous administration of a drug can be modeled using an element called
dose. You can use an array of doses to explore different dosing regimens and determine
the optimal dosing strategy. For details, see “Doses” on page 2-42.

A model can be built and visualized in three different views: the Diagram view, Table view,
and Equations view. Each view is a different representation of the same model. For
example, the Diagram view shows a graphical representation of the model and lets you
build models interactively. For details on all views, see “Model Views” on page 1-25.

As you build a model, the desktop checks if there are any errors or warnings and
identifies them using message indicators on page 1-11. You can hover over each indicator
to see the corresponding warning or error message. During model verification, the
desktop examines many aspects of the model including the model structure and validity of
mathematical expressions. It also verifies the consistency of units and dimensions, and
flags any issues.

You can save multiple models in one project, which uses a native file format ending in
*.sbproj. Alternatively, a model can be saved to an SBML–formatted file, but some
SimBiology features not supported by SBML are not saved with the model. For details,
see “SBML Support”.

Given a model, you can perform several model analyses such as simulation, parameter
estimation, and sensitivity calculation. For details, see “Analysis Workflow” on page 1-62.

 Modeling Workflow

1-23

See Also

More About
• “Model Views” on page 1-25
• “Model Definition” on page 2-2
• “SimBiology Desktop Help and Tools” on page 1-10
• “What Is SBML?”

1 SimBiology Desktop

1-24

Model Views
The SimBiology desktop provides three different views of a model on page 2-2: the
Diagram view, Table view, and Equations view. The Diagram view shows a graphical
representation of a model. It describes the model using a set of connected blocks. Blocks
represent different modeling elements such as quantities and expressions, and the view
shows the relationships between model elements graphically. The Table view displays
modeling elements and their properties in a tabular form. You can use either view to build
a model. The Equations view shows the differential equations and other expressions such
as assignment rules of a model. This view does not let you edit the model. If you make a
change to the model using the Diagram or Table view, the change is reflected in all views.
To open any view, select Open from the Model tab.

Diagram View
The Diagram view shows the structure of a model graphically. It provides information
about how model elements, such as species, interact with one another using a block
diagram. To supplement the diagram on page 1-26, this view also contains the browser
on page 1-31 that shows the relationships between quantities and expressions. You can
build a model by dragging and dropping blocks on page 1-43 from the block library
panel to the browser or diagram. The browser and diagram are synchronized, and any
update or change is reflected in both. The next figure shows a model open in the Diagram
view.

 Model Views

1-25

Diagram

The diagram section contains a set of connected blocks that shows the structure of a
model and the relationships between model quantities and expressions graphically.

You can add new quantities and expressions by dragging and dropping blocks from the
block library panel to the block diagram. To connect two blocks, Ctrl + click (Option +
click for a Mac) the first block and drag to the second block. Double-click a block to edit
its properties. Right-click a block to see the context menu with more options, such as
hiding the block to avoid clutter. Double-click the name of a block to rename.

The desktop uses contextual icons to provide more information about a block. The icons
appear above each block. For instance, if a species is being dosed, a dose icon appears
above the species block. Hover the mouse over the icon for more information. For details,
see contextual icons on page 1-15.
Adding and configuring reactions

Suppose you want to model the pharmacokinetics of antibacterial drugs in a time-kill
curve experiment [1]. Such an experiment involves exposing an in vitro bacterial

1 SimBiology Desktop

1-26

inoculum to a fixed antibiotic dose and monitoring bacterial activity over time. You can
model the in vitro drug kinetics using a one-compartment model with linear elimination to
account for drug degradation due to compound instability. This is represented by the first
reaction Drug_Central -> null. Include a second compartment (Biophase) to
incorporate potential pharmacologic delay, which correspond to the second and third
reactions: Drug_Central -> Drug_Central + Drug_Biophase, Drug_Biophase -
> null.

Drag and drop two compartment blocks onto the diagram. Then drop a species block
inside each compartment. To build the first reaction, reaction1, drag and drop a reaction
block onto the diagram. Then draw a line (Ctrl+Click or Options+Click on a Mac) from
the Drug_Central species to reaction1. Double-click the reaction block and the Block
Property Editor opens. In the Quantities Used by Reaction table, enter kdeg in the
Name column as the Forward Rate Parameter. This automatically adds a parameter
named kdeg, which is used as the forward rate constant for the reaction rate, that is,
kdeg*Drug_Central. Similarly, configure the second reaction reaction2. Enter ke as the
forward rate parameter for the reaction. To build the third reaction, reaction3, draw a line
from Drug_Central to Drug_Biophase. A reaction block is automatically added between
two species blocks. The input and output of the Biophase compartment are modeled as
first-order kinetic processes. Drug_Central is both a reactant and product in the input
process, assuming that the presence of the Biophase compartment does not affect the
mass balance. SimBiology indicates such species using a dashed line. The dashed line can
be achieved by drawing another line from reaction2 to Drug_Central. You can also update
a reaction by dragging a reaction line or arrow (Ctrl+Click or Option+Click in a Mac) to
another species.

 Model Views

1-27

Defining or updating a quantity value using mathematical equations

The equations can take the form of initial assignments, assignments during the course of
a simulation (repeated assignments), algebraic relationships, or differential equations
(rate rules). Each equation is represented by a unique block. For details about rule
blocks, see the block library on page 1-43. For more information about rules, see
“Definitions and Evaluations of Rules” on page 2-17.

Suppose, in the above example, you want to set the initial concentration of Drug_Central
to a factor of minimal inhibitory concentration (MIC). You can do so by using an
assignment rule that initializes the concentration of Drug_Central at simulation time = 0,
that is, Drug_Central0 = 0.25*MIC, where MIC is a parameter. The following figure
shows the graphical representation of the assignment rule.

Drag and drop the initial assignment rule block from the block library onto the diagram.
To define the left-hand-side (LHS) of the equation, draw a line from the rule block to
Drug_Central. An arrow appears pointing at Drug_Central. To display the right-hand-side
(RHS) of the equation, right-click the rule block and select Show Only Expressions. By
default, the RHS is set to 1. Double-click it and enter the equation: Drug_Central =
0.25*MIC. Drag and drop a parameter block and rename it as MIC. A dash–dot line
automatically appears connecting MIC to the rule block indicating MIC is referenced by
the RHS. You can also change the LHS by dragging the arrow (Ctrl+Click or Option
+Click in a Mac) to another quantity.

1 SimBiology Desktop

1-28

Incorporating sudden changes in model behavior

You can model sudden changes in model behavior based on a specified condition. For
example, you can reset a parameter value at a certain time point or when a certain
concentration threshold is crossed. In SimBiology, you can model such changes using a
modeling element called event. An event lets you specify discrete transitions in quantity
values that occur when a custom condition becomes true. Such condition is called an
event trigger. Once the condition becomes true, one or more event functions are
executed. For details, see events on page 2-30.

Suppose you want to set the concentration of Drug_Central at time = 5 to another factor
of MIC as well as the parameter value of the elimination rate constant ke. Specifically,

if (time >= 5)
 Drug_Central = 0.35*MIC;
 ke = p1*Drug_Biophase;

where p1 is another parameter.

The next figure shows the graphical representation of the event.

By default, parameter blocks are hidden from the diagram. To see hidden parameter
blocks such as ke, right-click the diagram, and select Show All Hidden Blocks and
Lines. Drag and drop an event block onto the diagram. To define the quantities that are

 Model Views

1-29

being updated by the event, draw a line from the event block to Drug_Central and another
line to ke. Two arrows appear pointing at Drug_Central and ke, which are the LHS of
event functions. To show the RHS of event functions, right-click the event block and select
Show Only Expressions. Double-click the expressions to edit the event functions as
shown. To see the dash–dot lines indicating quantities referenced in the RHS of an event
function, right-click the event block and select Show Expressions and Lines (Alt
+Click). In this example, MIC, p1, and Drug_Biophase are the referenced quantities as
indicated by dash–dot lines. You can also change the LHS by dragging the arrow (Ctrl
+Click or Option+Click in a Mac) to another species.

Interpreting a model from its diagram

The next figure shows an example of a block diagram of another model and
interpretations from looking at the graphical semantics.

There are three reactions in this model. Species x, y1, and y2 are catalysts, that is, both
reactants and products, and z is a product. The amount of species y1 is being modified by
an event. Different contextual icons above some blocks indicate:

• The amount of species z is being increased by a dose.
• There is an error with an initial assignment rule.
• The compartment has constant volume.

1 SimBiology Desktop

1-30

Making the diagram clearer

When there are multiple references to the same quantity, multiple lines are connected to
the quantity block. This can cause the diagram to look cluttered. To make the diagram
clearer, you can split the block, that is, create copies of the same block, so that each
reference is connected to a different copy of the block. You can also clone a block to add
another use for it. For instance, you can first clone a species block that you know will be
referenced in multiple expressions. Then use each clone in each expression as you build
the model.

SimBiology lets you clone or split a species block. For event blocks, you can only split
them if there are multiple event functions, but you cannot clone an event. To clone or split
a species block, first select the block. Then select Split or Clone from the drop-down
menu of the Split button on the Block tab. The next figure shows an example where a
species (s2) is referenced by a repeated assignment rule and event, and splitting the
block creates a copy for each reference. Copied blocks are then marked by a contextual
icon to indicate that they have been cloned.

You can also hide blocks to avoid clutter. To hide a block, right-click it, and select Hide
Block from the context menu. By default, blocks that represent constant parameters are
hidden. Hidden blocks can be shown by selecting Hidden Blocks on the Block tab.

Browser

The browser supplements the diagram by providing a table of model elements that shows
the relationships between quantities and expressions. You can edit these elements in the

 Model Views

1-31

browser or add new quantities or expressions by dragging and dropping blocks from the
block library panel onto the browser. If you make a change in the browser, the diagram is
automatically updated.

You can view the model elements shown in the browser by quantities or expressions. In
the quantities view, the browser shows all quantities of the model. If a quantity is being
modified by any expressions and doses, the view also lists them. Alternatively, the
expressions view lists all expressions of the model. It also shows quantities that are
referenced by each expression. To switch between the two views, select View > By
Quantities or View > By Expressions on the Model tab.
View By Quantities

The quantities view shows a table of quantities and expressions that are modifying them.
Use this view to check the values of quantities and if they are being modified by
expressions such as events or assignment rules. You can also see the right-hand-side, of
each modifying expression. To display quantity units, select Tools > Show Quantity
Units on the Model tab. The check box next to each expression indicates whether the
expression is active and used during simulation.

You can model biological variability using a modeling element called variant. A variant is
a collection of quantities with alternative values. For instance, in the above example, you
can have one set of parameter values such as the elimination rate (ke) and degradation
rate (kdeg) for each antibacterial drug.

The browser shows a variant column for each variant of a model. For instance, a variant
named Vancomycin is shown in the next figure. You can edit each quantity value by
double-clicking it. When there are multiple variants, you can display a subset by clicking
Select Variants on the Model tab. To add a variant, drag and drop a variant block from
the block panel onto the browser.

If there are expressions for which the left-hand-sides are not defined, these expressions
are listed under the section named Undefined. For example, in the next figure, the initial
assignment rule_2 is modifying a quantity p2 that is not defined yet in the model. You can
right-click the undefined quantity and define it as a species, parameter, or compartment.

Before running any analysis task, SimBiology prepares a model for simulation and
updates the quantity values according to the variant values, assignment rules, and doses.
For details, see “Model Simulation” on page 4-3. You can check if the quantity values
are initialized as you expect by checking the initial conditions of the task. To see the
initial conditions, first, select Show Tasks on the Model tab. Then select a task in the
task toolbar. For instance, in the following figure, the initial conditions of a simulation

1 SimBiology Desktop

1-32

task is shown. In this task, a variant called Vancomycin and a dose called dose_1 have
been selected to apply to the model during simulation. The concentration of Drug_Central
at the beginning of the simulation is 0.25, compared to the model value 0.0. The value is
updated because, at simulation time = 0, SimBiology evaluates the initial assignment
rule_1 that initializes Drug_Central to 0.25*MIC. Since the variant Vancomycin has been
selected, the alternate values stored in it, namely 0.5 and 0.86 for kdeg and ke, are used
instead of model values.

Since a dose is applied to species Drug_Biophase at time = 0, the browser displays the
total amount of the species, that is, the initial condition value of the species plus the dose
amount. For instance, in the next figure, the total amount of species Drug_Biophase after
applying the dose is 0.1. Alternatively, you can view the initial value and dose amount
separately by selecting Tools > Task Initial Conditions Options > Show the dose
amount separate from the initial condition value from the Model tab.

 Model Views

1-33

Defining or updating a quantity value using mathematical equations. The
equations can take the form of initial assignments, assignments during the course of a

1 SimBiology Desktop

1-34

simulation (repeated assignments), algebraic relationships, or differential equations (rate
rules). For details, see rules on page 2-17. In the following example, the concentration of
Drug_Central at time = 0 is defined by an initial assignment equation, that is,
Drug_Central0 = 0.25*MIC. The next figure shows how the browser displays the
assignment rule in relation to the species Drug_Central.

Drag and drop the initial assignment rule block onto the species Drug_Central. The rule
block appears as a separate row below the species. Double-click the RHS of the equation
to edit it.

Incorporating sudden changes in model behavior. You can model sudden changes in
model behavior based on a specified condition by using a modeling element called event.
In the following example, you want to set the concentration of Drug_Central at time = 5
to another factor of MIC as well as the parameter value of the elimination rate constant
ke. Specifically,

if (time >= 5)
 Drug_Central = 0.35*MIC;
 ke = p1*Drug_Biophase;

where p1 is another parameter.

The next figure shows how the browser displays the event.

 Model Views

1-35

Drag and drop the event block onto the species Drug_Central. An event appears as a
separate row below the species. To add the second event function, right-click the event
and select Add EventFcn. Double-click the event trigger or RHS of an event function to
edit.

Increasing a species amount using doses. You can model the increase in the amount
of a species due to a stimulus such as an oral or intravenous administration of a drug. To
model such an increase in a species amount, use the modeling element called dose on
page 2-42. In the following example, the concentration of species Drug_Biophase is
being increased by a dose.

1 SimBiology Desktop

1-36

Drag and drop a dose block onto the target species. A dose appears as a separate row
below the species. To edit the dose amount, double-click the table icon. In this example,
the concentration of species Drug_Biophase is being increased by a schedule dose dose_1.
For more details about dose objects, see “Doses” on page 2-42.
View by Expressions

In the expressions view, you can see all expressions of a model grouped by their types
such as reactions, assignment rules, and events. It shows how each expression is defined
and the relationship between each expression and quantities. The check box next to each
expression indicates whether the expression is active and used during simulation.

You can expand each reaction in the browser to configure its properties, such as reaction
rate, kinetic law, quantities referenced by the reactions, and quantity values. You can
define your own reaction rate or use a predefined rate that follows some particular
reaction kinetics such as mass action.

A built-in kinetic law in SimBiology specifies a rate law that defines the reaction rate.
Specifically each law has a predefined reaction rate containing parameters and species
that need to be mapped to the corresponding model quantities to determine the final
reaction rate. The browser displays the mapping information in parentheses next to a
quantity. For instance, if a parameter kf is used as the forward rate parameter in the
reaction rate, the browser displays kf(Forward). In case you map incorrectly, you can
reset the mapping by right-clicking the quantity and selecting Remove Kinetic Law
Mapping.

The kinetic law for a newly added reaction is configured to MassAction by default, and
the desktop automatically creates and maps the species and parameters needed by the

 Model Views

1-37

reaction rate. For other kinetic laws, only parameters are created and mapped. You need
to create and map the species manually. To change the default kinetic law and reaction
building settings, select Tools > Reaction Building Preferences on the Model tab.

This view also displays the assignment rules grouped according to their types such as
initial assignment, repeated assignment, rate rule, and algebraic rule. For each rule, you
can see its left-hand-side (LHS) and right-hand-side (RHS). The LHS is the quantity that is
being modified by a rule, except for the algebraic rule. The algebraic rule takes the form
0 = Expression, and the rule is specified as the Expression. For details, see
“Definitions and Evaluations of Rules” on page 2-17.

This view also shows events. For each event, its trigger and event functions are grouped
together. Each trigger is started with the word if followed by an expression such as if
time>=3. You can also configure the LHS and RHS of each event function.

In addition to all the expressions, you can also see doses on page 2-42 that are grouped
into either schedule doses or repeat doses. For each dose, the corresponding dosed
species, that is, dose target, is shown right next to it. You can double-click the dose icon
to edit all dose properties or the table icon to edit just the dose schedule.

The following figure shows a model open in the expressions view of the browser.

1 SimBiology Desktop

1-38

Adding and configuring reactions. There are three reactions in this example. Suppose
the first and second reaction follow the mass action kinetics and the third reaction follows
the Michaelis-Menten kinetics. For illustration purposes, the configuration of reaction1
and reaction3 is described below.

The following figure shows the details of reaction1. It follows the mass action kinetics
with the reaction rate kdeg*Central.Drug_Central.

 Model Views

1-39

To add a reaction, drag and drop a reaction block onto the browser. You can then enter
the reaction string by double-clicking the default null -> null string. Since there are
species in two compartments, qualify the species name with the compartment name. For
example, Central.Drug_Central indicates that the Drug_Central species is inside the
Central compartment. By default, the reaction’s kinetic law is configured to MassAction.
The parameter kf is automatically created and mapped to the forward rate constant of the
reaction rate. If you want to use a different parameter, you can change it by double-
clicking kf and entering the name of another parameter such as kdeg. You can then delete
the parameter kf which is no longer used in the reaction rate.

The following figure shows the details of reaction3 that is configured to follow Michaelis-
Menten enzyme kinetics with the reaction rate Vm*S/(Km+S).

Drag and drop a reaction block onto the browser. By default, it uses the mass action
kinetic law. The parameter kf is automatically created and mapped to the forward rate
constant. To specify the reaction to follow Michaelis-Menten kinetics, double-click the row

1 SimBiology Desktop

1-40

labeled MassAction and select Henri-Michaelis-Menten. SimBiology automatically
updates the reaction rate to Vm*S/(Km+S). The parameters vm and km are also
automatically added and mapped to Vm and Km, which are the parameters referenced in
the reaction rate. However, the S species referenced in the reaction rate is not mapped
yet as indicated by a dotted species block. Double-click the (S) row to enter a model
species that corresponds to the species S. The reaction rate is then automatically updated
using the selected species. To avoid confusion, you may delete the parameter kf, which is
no longer used in the reaction rate.

Adding and configuring assignment rules. In this example, there are two initial
assignment rules on page 2-17. The first initial assignment rule_1 initializes the
concentration of species Drug_Central. The second initial assignment rule_2 initializes an
undefined quantity p2.

The next figure shows how the expressions view displays such assignment rules.

Drag and drop the initial assignment rule block onto the browser. Define the LHS of the
rule by double-clicking the string null and entering the name of a quantity that the rule
is modifying. Double-click the RHS of the equation to edit it. If the LHS of the rule is
referring to a quantity that is not yet defined in the model, such as p2 in this example,
right-click the undefined quantity and select Define Quantities to define it as a species,
parameter, or compartment.

Adding and configuring events. In this example, there is one event event_1 with two
event functions changing the concentration of species Drug_Central and parameter ke
respectively. Specifically,

 Model Views

1-41

if (time >= 5)
 Drug_Central = 0.35*MIC;
 ke = p1*Drug_Biophase;

where p1 is a parameter.

The next figure shows how the expressions view displays the event.

Drag and drop the event block onto the browser. Double-click the default trigger if
time>=1 to edit it. The default event function, null = 0.0, is listed below the trigger.
Double-click its LHS and RHS to edit. To add more event functions, right-click the event
and select Add EventFcn.

Adding and configuring doses. You can increase the amount or concentration of a
species using a dose during simulation. In this example, the concentration of species
Drug_Biophase is being increased by a schedule dose dose_1. The next figure shows how
the expressions view displays the dose.

1 SimBiology Desktop

1-42

Drag and drop a dose block onto the browser. Define the dosed species by double-clicking
the LHS of the table icon. Double-click the dose icon to edit all dose properties or the
table icon to edit just the dose schedule.

Block Library Panel

The block library panel contains blocks from one or more block libraries. SimBiology
provides a default block library which contains blocks that represent all modeling
elements that you can use to build models. You can also create a library of custom blocks
with different block appearance settings. For instance, you can customize a receptor
protein to have a different block shape or color than other species whenever you use it in
the diagram. For details on the SimBiology libraries, see “Libraries” on page 1-58.

You can drag and drop most blocks from the panel to both the browser and diagram, and
there are some blocks that can be dropped only in the browser, not in the diagram. Some
blocks do not appear as blocks in the diagram but as contextual icons on page 1-15. For
instance, a dose block appears as a contextual icon above a species block that is being
dosed. The following table summarizes the behaviors of different built-in block types.

Block
Name

Blo
ck
Gr
ap
hic
s

Drag
and
Drop
onto
the
Brows
er

Drag
and
Drop
onto
the
Diagr
am

Block
appe
ars
as

Description

Species Yes Yes Block Quantity that participates in expressions, such as
reactions and represents an amount or
concentration.

 Model Views

1-43

Block
Name

Blo
ck
Gr
ap
hic
s

Drag
and
Drop
onto
the
Brows
er

Drag
and
Drop
onto
the
Diagr
am

Block
appe
ars
as

Description

Compartm
ent

Yes Yes Block Physically bounded region that contains species
in a model. All species in a model must belong to
a compartment. A compartment can also belong
to another compartment. For instance, a
compartment that represents a cell can contain
other cellular components such as mitochondria
and nucleus as separate compartments within
the cell compartment.

Parameter Yes Yes Block Quantity that is referenced by expressions. For
instance, you can use it to define a rate constant
of a reaction.

By default, if you drop a parameter block onto
the browser or diagram, it is available to all
expressions including reactions. This type of
parameter is called a model-scoped parameter
and listed under the Model Scoped Parameters
section in the quantities view of the browser.

Another type is called a reaction-scoped
parameter, where the parameter is only available
to one particular reaction. These parameters are
listed under the Reaction Scoped Parameters
section. To add a reaction-scoped parameter,
switch to the expressions view of the browser
and then drop a parameter block onto a
particular reaction.

To switch between the two types, right-click a
parameter block and select Change Scope.

1 SimBiology Desktop

1-44

Block
Name

Blo
ck
Gr
ap
hic
s

Drag
and
Drop
onto
the
Brows
er

Drag
and
Drop
onto
the
Diagr
am

Block
appe
ars
as

Description

Reaction Yes
(only
in the
expres
sions
view of
the
brows
er)

Yes Block Process such as a transformation, transport, or
the binding and unbinding of reactants and
products.

Initial
assignmen
t

Yes Yes Block Expression to assign the initial value of a
quantity. For example, an initial assignment rule
s4 = 0.75 means that the amount of species s4
is initialized to 0.75 at simulation time = 0.

Repeated
assignmen
t

Yes Yes Block Expression to assign a quantity value repeatedly
during simulation. For example, a repeated
assignment rule x = y1 + y2 means that the
amount of species x is repeatedly assigned the
total amount of species y1 and y2 throughout the
simulation.

Rate rule Yes Yes Block Differential equation to specify the time
derivative of a model quantity. For example, a
differential equation x = k * (y + z)
specifies that the time derivative of species x
(dx/dt) is evaluated continuously during the
simulation according to the equation.

 Model Views

1-45

Block
Name

Blo
ck
Gr
ap
hic
s

Drag
and
Drop
onto
the
Brows
er

Drag
and
Drop
onto
the
Diagr
am

Block
appe
ars
as

Description

Algebraic
rule

Yes Yes Block Expression to specify a mathematical constraint
(for example, a nonlinear equation) on one or
more quantities that must hold during
simulation. For example, if you have an equation
such as x = log(x+time), write the
corresponding algebraic rule as log(x+time)-
x.

Tip Use algebraic rules only for nonlinear
equations that cannot be solved analytically to
get closed-form solutions. For details, see
“Algebraic Rules” on page 2-18.

Event Yes Yes Block Discrete transition in a quantity value. This
discrete transition occurs when a specified
condition becomes true.

Repeat
dose

Yes No Conte
xtual
icon
on
page
1-15
above
a
speci
es
block
that
is
being
dosed

Modeling element that increases the value of a
species by a certain amount at predefined time
intervals. To add a dose to a species, drag and
drop the dose block onto the species in the
quantities view of the browser. Double-click the
dose icon to edit the dose value.

1 SimBiology Desktop

1-46

Block
Name

Blo
ck
Gr
ap
hic
s

Drag
and
Drop
onto
the
Brows
er

Drag
and
Drop
onto
the
Diagr
am

Block
appe
ars
as

Description

Schedule
dose

Yes No Conte
xtual
icon
on
page
1-15
above
a
speci
es
block
that
is
being
dosed

Modeling element that increases the value of a
species by certain amount at specific time points.
To add a dose to a species, drag and drop the
dose block onto the species in the quantities view
of the browser. Double-click the dose icon to edit
the dose value.

Variant Yes
(only
in the
quanti
ties
view of
the
brows
er)

No Colu
mn in
the
Brow
ser

Modeling element that is a collection of
quantities with alternate values from the original
model values.

Text No Yes Block Text block to annotate the model in the diagram.

Table View
This view presents a model in a tabular format, and there are many tables that organize
the model information differently. For instance, the Table Overview gives an overview of
the entire model by showing the complete list of model quantities, expressions, and some

 Model Views

1-47

of their properties. There are also tables dedicated to each type of quantity or expression,
doses, and variants, and these individual tables provide more information specific for
each type.

You can open different tables from the Open drop-down list to edit and add elements to
each table. For instance, you can enter a reaction string such as y2 -> z in the Table
Overview or Reactions table.

The context menu, which you can open using a right-click, provides options to customize
the table and open other modeling tools. For instance, to check which expressions are
referencing a quantity, right-click the quantity and select Show Usages from the context
menu.

1 SimBiology Desktop

1-48

Equations View
This view describes a model in the form of mathematical equations. It shows a system of
ordinary differential equations (ODEs) that represent a model. Specifically, the ODEs are
derived from model reactions and define what quantities are being integrated during
model simulation. For details about the simulation process and how SimBiology
constructs ODEs, see “Model Simulation” on page 4-3.

You can use this view to help debug a model. For instance, you can check the initial
conditions of ODEs to see if the quantity values are initialized as you expect. You can also
see how SimBiology corrects the dimensions of ODEs by dividing the right-hand-sides of
equations with compartment volumes. The volume-correction information can help debug
unexpected simulation results, especially when you have a multi-compartment model with
different compartment volumes. You can also compare the ODEs to the ones from a
publication to reproduce the reported results.

The initial conditions of ODEs are used as starting points to simulate the dynamics of a
model. The initial conditions are the quantity values at simulation time = 0. The Value at
Time Zero column of the view shows these values. You can check this column to see if
the quantity values are initialized as you expect based on initial assignment and repeated
assignment rules, and debug the rules as necessary. For details about how SimBiology
evaluates the assignment rules, see “Model Simulation” on page 4-3.

The next figure shows a model open in the equations view, which has the Equations and
Initial Conditions sections. The Equations section contains the expressions and ODEs
that SimBiology evaluates during model simulation. The Initial Conditions section
contains the quantity values at simulation time = 0. Since initial assignments are
evaluated just once at time = 0, they are only accessible in the Initial Conditions section
via a contextual icon. Repeated assignments are evaluated both at time = 0 and during
simulation. Hence they are shown in the Equations section and also indicated by
contextual icons.

 Model Views

1-49

In this model, the concentration of drug in the central compartment Drug_Central is
initialized to 0.25*MIC, resulting in the amount of 0.25 as shown in the Value at Time
Zero column. To see the initial assignment equation, click the contextual icon next to
Drug_Central. In addition, a repeated assignment equation sets the value of parameter
kdeg to p1*1.5, resulting in the value of 0.75. You can see the equation listed under the
Repeated Assignments section. The desktop also shows a contextual icon next to the
parameter kdeg to indicate the application of the assignment rule.

To perform an analysis on a model such as simulation or sensitivity calculation, you need
to run a task. You can specify which doses and variants to use for the analysis in the task
configuration on page 1-72. When you select a task, the desktop applies the doses and
variants specified in the task, hence updating the corresponding quantity values in the
Value at Time Zero column. The dose is also added to the Equations section. The next
figure shows the equations view of the same model with a task selected. In this example,
the task is a simulation task that uses a dose dose_1 to increase the concentration of drug
in the Biophase compartment Drug_Biophase at simulation time = 0.

1 SimBiology Desktop

1-50

The grayed-out numbers in the Model Value column indicates the quantity values that
have been changed due to the task configuration. The model value and the value at time
zero are considered different if the relative tolerance between the values is greater than
10-12, that is, |x-y| > 1e-12*min(|x|,|y|) where x is the model value and y is the
value at time zero.

The Fluxes section of the equations view contains reaction fluxes for all reactions in the
order they appear in the model. Reaction fluxes are equivalent to reaction rates except
that the dimensions of fluxes are always amount/time. Hence, if the dimension of a
reaction rate is concentration/time, the expression for the reaction flux is equal to
the reaction rate multiplied by a compartment volume. SimBiology uses the name of a
compartment to represent its volume in reaction fluxes and ordinary differential
equations (ODEs). For details, see “Deriving ODEs from Reactions” on page 4-5. The
next figure illustrates an example where reaction1 is volume-corrected.

 Model Views

1-51

While preparing a model for simulation and other analyses, SimBiology performs
dimensional analysis to make sure the dimensions of the left-hand-side (LHS) and right-
hand-side (RHS) of each ODE are consistent. The LHS of each ODE is the time-derivative
of the amount or concentration of a species, and the RHS is defined using reaction fluxes.
If you specify no units, the default dimension for a species is concentration, and the
default dimension for a flux is amount/time. For such cases, SimBiology divides the RHS
by a compartment volume to make the dimensions of LHS and RHS consistent. For
details, see “Deriving ODEs from Reactions” on page 4-5. You can see all the ODEs in
the ODEs section of the view as shown in the next figure. In this example, SimBiology
uses the default dimensions for species and fluxes. Hence each RHS of ODE is divided by
the corresponding compartment volume Central or Biophase for volume-correction. By
default, the flux names are used in ODEs. To use the expressions explicitly instead of
using the flux names, select Tools > Embed fluxes on the Model tab. The following
figure shows ODEs after fluxes have been embedded.

1 SimBiology Desktop

1-52

References
[1] Nielsen, E. I., Viberg, A., Lowdin, E., Cars, O., Karlsson, M.O., and Sandstrom, M.

(2007) Semimechanistic pharmacokinetic/pharmacodynamic model for
assessment of activity of antibacterial agents from time-kill curve experiments.
Antimicrobial Agents and Chemotherapy. 51:128-136.

See Also

More About
• “General Workflow” on page 1-2
• “Modeling Workflow” on page 1-22
• “Analysis Workflow” on page 1-62

 See Also

1-53

Copying SimBiology Blocks
When building models interactively in the “Diagram” on page 1-26 view of the SimBiology
desktop, you can copy and paste blocks using Ctrl + C and Ctrl + V. You can also use the
context (right-click) menu.

• Using Ctrl + V works only if there is enough space near the original blocks. The
desktop does not automatically increase the compartment size if there is not enough
space.

• Using the context menu gives you a better control of where you want the copied
blocks to appear. The desktop uses the current location of the mouse pointer to place
the new blocks. You must still make sure that there is enough space at the new
location.

Generally, only selected blocks are copied and blocks connected to the selected blocks are
not copied. However, there are a few different behaviors depending on the block type as
explained next.

Compartment Blocks
If you select a compartment and copy it, the desktop copies the compartment block and
any blocks that are inside the compartment, even if they are not visible or selected
explicitly. You can display all hidden blocks within a compartment by right-clicking inside
the compartment and selecting Show Hidden Blocks and Lines in Compartment. The
desktop does not copy any blocks that lie outside the compartment, even if they are
connected to the blocks within it.

Species Blocks
If you copy a species block that is dosed, the associated dose is not copied. You can add a
dose to the copied species manually using the “Browser” on page 1-31 or create a
duplicate dose from the dose table on page 1-47 and update its target name.

Reaction Blocks
If you select a reaction block, the desktop copies only the reaction block and does not
copy the associated species participating in the reaction. The reaction string is null ->
null and its reaction rate is set to empty.

1 SimBiology Desktop

1-54

Parameter Blocks
Parameters can be model-scoped or reaction-scoped.

• If you select and copy an entire reaction (that is, the reaction block, the reactant
species, and product species), the reaction-scoped parameter (such as a forward rate
parameter) is also copied even though the parameter is not visible or selected
explicitly.

• However, if the parameter is model-scoped, the newly copied reaction uses the original
parameter (that is, both the original reaction and copied reaction share the
parameter). If you paste the entire reaction to a different model, then the desktop does
not copy the parameter, and you must create one for the reaction rate in that model.

Rule and Events Blocks
If you copy a rule or event block, the desktop uses the original rule or event string for the
copied block. In other words, the copied rule or event has the connections to the same
blocks as the original block.

If you copy a rule (or event) block and its right-hand-side (RHS) species block, the
desktop does not update the rule (or event) string to include the newly copied species
block. The copied rule continues pointing to the original RHS species block.

As an example, suppose that you have a rule (rule_1) defined as s1 = 10 * s2. You
select rule_1 and its RHS species block s2 and copy them. After pasting, rule_2 and s3 are
created, but rule_2 continues pointing to the original s2 block. The newly copied species
s3 is unused.

 Copying SimBiology Blocks

1-55

Setting Preferences
Preferences are the desktop settings that apply to all projects. They remain persistent
across sessions of MATLAB and the desktop. To access and set preferences, select
Preferences on the Home tab.

Desktop display — has options to choose which columns to display for tables shown in
the desktop.

Model Building — lets you select which model view to show by default when you open a
model. The Diagram view on page 1-25 is the default. Other options are Table Overview
on page 1-47 and Equations view on page 1-49. You can also change the default options
related to configuring reactions. For instance, you can change the default kinetic law or
disable the option to create parameters automatically. For details about configuring
reactions, see “View by Expressions” on page 1-37.

Indicators — lets you choose whether to show indicators above the blocks or next to a
quantity in a table. For details, see “Message Indicators” on page 1-11 and “Contextual
Icons” on page 1-15.

Tasks — has options to choose the layout of the Task Editor on page 1-65 and change
task settings.

Report Generator — lets you select the output format of the report, type of images, and
location of images after you have run the Generate report task.

Search — lets you choose in which model view a search item is displayed when you
double-click it from the search results. The diagram view on page 1-25 is the default.

History — lets you choose the number of most recently used models, projects, and data
files to show when you click Recent Files in the content panel on page 1-5. You can also
specify the number of recent searches that show up when you select View Search
History from the search drop-down menu.

Confirmation Dialogs — lets you specify whether or not the desktop displays
confirmation dialog boxes before some desktop actions. For instance, a warning dialog is
displayed by default when you try to delete data from a project.

1 SimBiology Desktop

1-56

See Also

More About
• “General Workflow” on page 1-2
• “Modeling Workflow” on page 1-22
• “Libraries” on page 1-58

 See Also

1-57

Libraries
The SimBiology libraries are collections of built-in components that you can use to build
and analyze models. For instance, you can use built-in units such as mole or molecule as
amount units for species. As you perform model analyses, you can use built-in plots such
as box plot or residuals plot to display the analysis results. You can also add custom
components to any library. For instance, you can define a custom unit or block and use it
as you build models. Similar to preferences on page 1-56, libraries are saved across
sessions of MATLAB and the SimBiology desktop. Libraries are available for all projects
and are not part of any one project. You can also export libraries and share with others by
selecting Export All Libraries from the action menu.

To open a library in the SimBiology desktop, select Content > Libraries and double-click
a library. For instance, the following figure shows the kinetic laws library with all the
available built-in kinetic laws.

1 SimBiology Desktop

1-58

Kinetic Laws Library
As you configure model reactions, you can use predefined reaction rates that follow
particular kinetics such as mass action or Michaelis-Menten. SimBiology provides a list of
such predefined rates in the Kinetic Laws library.

The kinetic law for a newly added reaction is configured to MassAction by default, and
SimBiology automatically creates and maps the species and parameters needed by the
reaction rate. For other kinetic laws, only parameters are created and mapped. You need
to create and map the species manually. For details about configuring reaction rates in
the SimBiology desktop, see “View by Expressions” on page 1-37. Use the Unknown
kinetic law to define a custom reaction rate with its own parameters. You must define and
add the species and parameters needed by the custom rate.

 Libraries

1-59

Note The MassAction and Unknown kinetic laws can have different simulation results
even when the reaction rate is the same. This can happen when you have a reversible
reaction with species in different compartments. The difference in simulation results is
because of the volume-scaling performed by SimBiology during the dimensional analysis.
For details, see “Deriving ODEs from Reactions” on page 4-5. Specifically, for
MassAction, SimBiology uses corresponding compartment volumes to multiply the
forward and reverse rates. However, for Unknown and other built-in kinetic laws,
SimBiology multiplies the entire rate by only one compartment which contains the
reactants. To see exactly what compartment volumes are used for scaling, open the
“Equations View” on page 1-49 and check the ODEs section.

Units Library
It provides a collection of units that you can use. The library displays the unit composition
for each unit. The Menu Display column controls how each unit is displayed when
selecting quantity units in the Table on page 1-47 or Diagram on page 1-25 views. For
instance, suppose you have a custom unit with the unit composition mole/
(liter*second). Depending on what you select in the Menu Display, SimBiology
displays it differently in the Units column of Table Overview.

Unit Prefixes Library
It provides a list of all the available unit prefixes.

1 SimBiology Desktop

1-60

Blocks Library
It contains blocks that you can use to build models interactively. SimBiology provides a
default block library called ModelBuilding that contains built-in blocks representing all
modeling elements. In addition to built-in blocks, you can create custom blocks with
different appearances. For instance, you can customize a receptor protein to have a
different block shape or color than other species. You can use these blocks to build a
model graphically in the diagram view on page 1-25. For details about different built-in
block types, see Built-in Blocks on page 1-43.

See Also

More About
• “General Workflow” on page 1-2
• “Modeling Workflow” on page 1-22
• “Analysis Workflow” on page 1-62
• “Setting Preferences” on page 1-56

 See Also

1-61

Analysis Workflow

1 SimBiology Desktop

1-62

SimBiology lets you analyze models of dynamic systems. For instance, you can simulate
various biological systems such as signaling pathways and explore what-if hypotheses.
You can investigate system dynamics and guide experimentation using parameter sweeps
and sensitivity analysis. Various dosing regimens can be evaluated to assess different
combination therapies. In addition, you can use experimental time course data to estimate
model parameters using nonlinear regression or mixed-effects techniques.

To perform these analyses, the SimBiology desktop provides built-in MATLAB scripts with
a user interface called tasks. Each task is open and displayed in the task editor, where you
can configure the task’s settings such as specifying how long the simulation runs. The
desktop automatically checks for errors and warnings as you configure the task and flags
any issues using message indicators.

As a task is running, it displays a plot that shows the values of model quantities over time.
The plot is updated live as the model is simulated. You can also add experimental data to
the plot to compare with simulation results.

The desktop provides interactive model exploration tools that let you vary parameter
values, initial conditions, and dosing schedules. For instance, you can simulate the model
and interactively vary the value of a parameter of interest. The live plot automatically
updates for the change, and you can check the plot to see if the simulation result using
the new parameter value is close to experimental data. Then you can use the new value as
an initial estimate when you perform parameter estimation.

Once the task finishes, you can visualize the results using different MATLAB plots. The
desktop provides a default set of plots and selects the plots that are appropriate for the
specific task being run. You can add additional plots to gain more insight into your
results. You can export the results to MATLAB workspace or share with others by saving
the results in a MAT or Excel® file.

The desktop provides the equivalent MATLAB script for each task. You can use these
scripts as templates and modify them as necessary. For instance, you can modify the
parameter scan task for more flexible sampling options using other MATLAB functions.
You can write such scripts from within the task editor by creating a custom task, which is
saved with the project.

You can also create standalone applications for model distribution and simulation.
Suppose you want to share your model and analysis with non-modelers using a simple
standalone application. You, as a modeler, can hide the details of the model and decide
what model information to expose to other non-modelers. With the desktop you can build
such an application that end users can use to vary model parameters, modify dosing

 Analysis Workflow

1-63

schedules, visualize the dynamics of key response variables, and save the results. For
details, see “Deployment”.

See Also

More About
• “General Workflow” on page 1-2
• “Modeling Workflow” on page 1-22
• “Task Editor” on page 1-65
• “Configuring Tasks” on page 1-72

1 SimBiology Desktop

1-64

Task Editor
Each task on page 1-68 in the SimBiology desktop opens within the task editor, where
you can edit the task settings, explore model parameters, and visualize live simulation
results. If there are multiple tasks, each task opens in its own tab within the editor. The
editor is composed of the Task, Explorer Tools, and Live Plots. You can display each of
them by selecting the appropriate toggle button in the Editor tab. The tab also contains
other options to add new tasks, view equivalent MATLAB code of the task, create
standalone applications, and run the task.

The Task gives you a graphical way to define what is executed when you run a task.
Suppose you have a variant that has an alternate set of parameter values for a cancer
patient and you want to simulate the model using those values. You can specify the
variant in the Variants to Apply section of a simulation task and run it. For more details
about each section of a task, you can hover over the information icon to see its context-
sensitive help. As you configure the task, the desktop checks for any errors or warnings
and flags them using message indicators. For details, see “Configuring Tasks” on page 1-
72.

The Explorer Tools let you explore parameter values, initial conditions, and dose
schedules with sliders. These interactive tools let you quickly iterate through values
without modifying the base model. For instance, you can vary a model parameter value
and find out an initial value that generates simulation results closer to experimental
observations. Then you can use the value as an initial estimate when you perform
parameter estimation. You can also calculate statistics on simulation results using
mathematical expressions to get better insight into the results. For instance, if you want
to calculate an AUC (area under curve) of the concentration-time curve of a drug, you can
write an expression such as trapz(drug).

The Live Plots show the live simulation results as the task is running. You can also add
experimental data points to compare with simulation results or define a mathematical
expression to plot by right-clicking the live plot.

The tools for working with Live Plots and Explorer Tools are also listed in the Explorer
tab. For instance, you can select which quantities or doses to explore, overlay simulation
results in the live plot, or add new plots.

 Task Editor

1-65

See Also

More About
• “Analysis Workflow” on page 1-62
• “Built-in Tasks” on page 1-68
• “Configuring Tasks” on page 1-72

1 SimBiology Desktop

1-66

• “General Workflow” on page 1-2
• “Modeling Workflow” on page 1-22

 See Also

1-67

Built-in Tasks
The desktop provides the following built-in tasks that you can use to analyze models.

Task
Nam
e

Description Show
s
Live
Plots

Sup
port
s
Depl
oym
ent

Comm
and-
line
Functi
on

Simul
ate
model

Simulates the dynamic behavior of a given model using a
variety of deterministic and stochastic solvers.

Yes Yes sbios
imula
te,
SimFu
nctio
n
objec
t

Fit
data

Estimates model parameters by fitting the model to time-
course data using nonlinear regression or nonlinear mixed-
effects (NLME) techniques. You can fit data to a single
individual to predict group-specific values or simultaneously
fit all groups (pooled fit) to estimate a single set of values.

Note For nonlinear mixed-effects (NLME) estimation,
Statistics and Machine Learning Toolbox™ is required. For
nonlinear regression, Optimization Toolbox™, Global
Optimization Toolbox, and Statistics and Machine Learning
Toolbox are recommended.

No.
The
progr
ess
plot
on
page
4-63
is
show
n
instea
d.

No sbiof
it for
nonlin
ear
regres
sion,
sbiof
itmix
ed for
NLME
modeli
ng

Calcu
late
conse
rved
cycles

Calculates a complete set of linear conservation relations for
species in a model and returns a list of species that are
conserved in the system, regardless of reaction rates.

No No sbioc
onsmo
iety

1 SimBiology Desktop

1-68

Task
Nam
e

Description Show
s
Live
Plots

Sup
port
s
Depl
oym
ent

Comm
and-
line
Functi
on

Calcu
late
sensit
ivities

Computes the time-dependent derivatives of one or more
species relative to either model parameters or species initial
conditions. Calculating these time-dependent sensitivities
helps you determine what effect the parameters or species
have on another species or parameter.

Yes No sbios
imula
te,
SimFu
nctio
nSens
itivi
ty
objec
t

Run
scan

Performs a parameter scan that lets you explore the model
dynamics given different values of model quantities and
doses.

Note Statistics and Machine Learning Toolbox is
recommended for more sampling options.

Yes No sbios
imula
te,
SimFu
nctio
n
objec
t

Run
scan
with
sensit
ivities

Performs a parameter scan while calculating sensitivities of
model quantities. For each scanned value, you can see the
corresponding time-dependent sensitivities of quantities with
respect to the parameter of interest.

Note Statistics and Machine Learning Toolbox is
recommended for more sampling options.

Yes No sbios
imula
te,
SimFu
nctio
nSens
itivi
ty
objec
t

 Built-in Tasks

1-69

Task
Nam
e

Description Show
s
Live
Plots

Sup
port
s
Depl
oym
ent

Comm
and-
line
Functi
on

Run
ense
mble
simul
ation

Performs a series of stochastic simulations of a model. When
the behavior of a model is stochastic in nature, a single
simulation run may not provide enough insight into the
model. Use this task to perform a number of simulations.

Yes No sbioe
nsemb
lerun

Run
group
simul
ation

Simulates a model for each group in the data. For example,
the grouped data can contain measurements of drug plasma
concentration at different times for multiple patients and
dosing information for each patient. This task performs a
simulation for each patient using the corresponding dosing
information from the data and compares the simulation
results to the data visually in the live plots section.

Yes No sbios
imula
te,
SimFu
nctio
n
objec
t

Creat
e
custo
m
analy
sis

Lets you create a task for custom analysis using MATLAB
language. For instance, you can write a script to identify the
optimal dosing strategy that suppresses tumor growth while
satisfying safety constraints.

No No —

Searc
h
mode
l(s)

Lets you search models for keywords. No No sbios
elect

Gener
ate
repor
t

Creates a report of the model and analysis results. You can
select various information to be included in the report such
as the diagram representation of the model, model
equations, or imported data.

No No —

1 SimBiology Desktop

1-70

See Also

More About
• “Analysis Workflow” on page 1-62
• “Task Editor” on page 1-65
• “Configuring Tasks” on page 1-72

 See Also

1-71

Configuring Tasks
For each task, you can configure model-related settings such as the model to simulate,
simulation-related settings such as the simulation stop time, and task-specific settings
such as values to scan in a parameter scan task.

As you configure these settings, the desktop checks for errors and warnings and flags
them using message indicators. You can hover over the indicators to get more information
about the errors or warnings. More information about each section is described in the
context-sensitive help of each section. You can open it by hovering over the information
icon next to each section.

When you are selecting model elements such as parameters to estimate or doses to use
during the analysis, you can use the Component Palette tool that provides a complete
list of model quantities, doses, and variants. You can open the tool from the Editor tab
and drag and drop model elements onto corresponding task sections. You can also use the
down arrow key from within the table of each section to select model elements. In some
of the tables, each row has a check box in the first column. When the box is checked, the
corresponding row item is active and used during the analysis. You can use the context
menu of each table for more options such as showing a quantity in the diagram view on
page 1-25.

Configuring Model-Related Settings
Each task lets you specify a model to analyze. If the model simulation is expected to take
a long time or the task is going to simulate the model multiple times (such as the Run
Scan task), you can accelerate the model to improve performance. You can enable the
acceleration by selecting the check box in the Model section.

You can also specify which doses and variants to use during the model analysis. Suppose
that you have two different sets of parameter values for the normal and cancer patients
stored in separate variants. You can specify which variant to use during simulation by
selecting it in the Variants to Apply section of the task. Similarly, different doses can be
selected in the Doses to Apply section to evaluate various dosing regimens or combine
dosing schedules to assess different combination therapies. You can also generate
variants with final quantity values after the model simulation or parameter estimation by
selecting the corresponding option in the Variants to Generate section of the Simulation
or Fit Data task.

1 SimBiology Desktop

1-72

Configuring Simulation-Related Settings
Each model has the default simulation settings associated with it. These settings include
simulation time options, solver options, compile options, and data logging options. You
can access these options by selecting Simulation Settings from the Editor tab of the
task editor. When you change these simulation settings, it affects every task that is using
the same model.

It is possible to overwrite some of the default simulation settings for certain tasks. These
settings are the simulation stop time, states to log, solver type, and log decimation. In the
corresponding section of a task, you can choose to use either the simulation settings
value or a custom value specific for the task only. If you select the custom value option,
that value is applied to the current task only and no other tasks.

Configuring Task-Specific Settings
Some of the tasks have unique settings that must be configured before the tasks can be
run on page 1-78.

Fit Data

This task lets you estimate model parameters by fitting the model to experimental time-
course data, using either nonlinear regression or nonlinear mixed-effects (NLME)
methods.

Consider grouped data containing measured drug concentrations at different times for
multiple individuals. You can estimate parameters for each individual or simultaneously fit
all individuals to estimate a single set of values. Select the Pool data check box in the
Estimation Method section to estimate one set of parameter values for all individuals.
This option is available for all methods except for the mixed-effects methods (nlmefit
and nlmefitsa).

In the Estimated Parameters section, you can select which parameters to estimate and
specify parameter transformations as needed. For example, some parameters such as
compartment volume and clearance are positive physical quantities, and log
transformation reflects the underlying physical constraint and generally improves fitting.
Use logit or probit transforms for parameters that have values from 0 through 1, such
as bioavailability. You can also specify the lower and upper bounds for each estimated
parameter for some of the estimation methods. For a list of methods that supports
parameter bounds, see “Supported Methods for Parameter Estimation” on page 4-59.

 Configuring Tasks

1-73

If your data contains any dosing information such as dose amount for each patient at each
dose time, use the Dosing Information section to define the mapping between the dose
column of the data and the corresponding model species that is being dosed. In the table
of the section, select the name of the dose variable (Dose Column Name), the dosed
species (Dose Component Name), and the type of dose on page 5-26 (Dose
Configuration).

You can map the measured or observed response data column (dependent variable) to the
corresponding model quantity in the Response and Error Model Information section.
For cases of multiple responses, SimBiology lets you specify an error model for each
response or one error model for all responses. There are four error models on page 4-62,
namely, constant, proportional, combined, and exponential. For a list of methods that
support multiple error models, see “Supported Methods for Parameter Estimation” on
page 4-59. In addition to these error models, you can also specify weights for each
response.

You can also customize some of the common settings of the selected estimation method in
Algorithm Settings. For instance, you can increase the maximum iterations if the
algorithm fails to converge within the default limit. You can specify additional algorithm
settings in Advanced Algorithm Settings. For example, if you want to use the
Levenberg-Marquardt algorithm for the lsqnonlin method, enter Algorithm =
'levenberg-marquardt'. To see a complete list of all options for the selected
estimation method, click the hyperlink provided in the section.

For an illustrated example of fitting PK profile data using a least-squares method, see
“Estimate Pharmacokinetic Parameters Using SimBiology Desktop”.

For mixed-effects problems on page 4-44, SimBiology lets you estimate population
parameters (fixed effects) while considering individual variations (random effects) using
nlmefit or nlmefitsa estimation methods (Statistics and Machine Learning Toolbox is
required). Consider grouped data containing measured drug concentrations at different
times for multiple individuals. The objective is to estimate population PK parameters,
such as volume of the central compartment Central and clearance Cl, and the random
effect of each individual. For the ith individual, the mixed-effects model can be described
as Centrali = θ1 + ηi and Cli = θ2 + ηi, where θ1 and θ2 are fixed effects and ηi is the
random effect of the ith individual. Random effects are assumed to be multivariate
normally distributed ηi ∼ N(0, Ψ), where Ψ is the covariance matrix of random effects.

SimBiology represents the model as Central = theta1+eta1 and Cl = theta2+eta2
in Estimated Parameters. The drop-down menu of the Expression column displays a
list of available expressions for each parameter. You can also enter your own expression,

1 SimBiology Desktop

1-74

but the fixed effect names must always start with theta and random effect names must
start with eta.

You can define the structure of Ψ in Covariance Matrix Pattern of Random Effect
Parameters. Each check box indicates a variance or covariance parameter that is being
estimated. By default, SimBiology assumes no covariance among random effects, that is,
uses a diagonal covariance matrix.

You can also specify individual-specific covariates such as patient weight that linearly
relate to an estimated parameter in the Covariates section. In the table of the section,
select the name of covariate column from the data. SimBiology allows centering of
covariates to improve interpretability of the model. For instance, you may want to mean
center the weight of each patient to help interpret the fixed effects and compare results
with and without the covariate. If there are multiple covariates, you can standardize each
of them by using an appropriate scaling method that may help you compare these
covariates and select some of them.

Once you have defined a covariate, the task automatically updates the expression list for
each parameter in Estimated Parameters to include additional parameter-covariate
relationships, such as Cl = exp(theta2+theta3*tWeight+eta2). theta3 is the fixed
effect of weight on Cl and tWeight is the (transformed) weight. For details, see
CovariateModel.

After the completion of the task, you can generate a variant that contains model
quantities with final estimated values. For an unpooled fit, that is, estimating one set of
parameter values for each individual or group, you can generate group-specific variants,
meaning one variant for each group. You can also generate a variant that contains the
mean estimated values (averaged across all groups). You can select the corresponding
option in the Variants to Generate section of the task.

Calculate Sensitivities

This task helps you investigate parameter effects on system dynamics. It lets you
calculate local, time-dependent sensitivities on page 4-29 of one or more species with
respect to parameter values and species initial conditions. Suppose that you want to
calculate the sensitivity of a receptor protein with respect to a model parameter to see if
the parameter has any influence on the receptor dynamics. You can specify the receptor
species as the sensitivity output (numerator) and the parameter as the input
(denominator) in the Sensitivities to Compute section. SimBiology lets you specify
species, parameters, and constant compartments as inputs (and species and parameters
as outputs) for sensitivity calculation. The computed sensitivities can be normalized by

 Configuring Tasks

1-75

selecting the appropriate method in the Normalization section. For instance, if you want
to normalize with respect to the sensitivity output only, select the Half normalization.
Select Full to make the data dimensionless. For details, see Normalization. You cannot
run the sensitivity analysis task on models that contain events, algebraic rules, or non-
constant compartments. For an illustrated example, see “Identify Important Network
Components from an Apoptosis Model Using Sensitivity Analysis” on page 4-37.

Run Scan

This task lets you explore how a model behaves with different quantity values or repeat
dose information, namely, dose start times, amounts, rates, and intervals. The task
simulates a model multiple times, each time using different values for those quantities or
doses of interest. Suppose you want to explore how varying the value of a forward rate
parameter affects the final concentration of a product species. You can specify the
parameter in Values to Scan. Use the Values to Scan Defined With section to specify
what values to generate for scanning. You can define the values using custom MATLAB
code. Alternatively, if you have Statistics and Machine Learning Toolbox, you can
generate values from a multivariate normal distribution or using Latin hypercube
sampling.

Run Ensemble Simulation

This task performs multiple simulations of a model using a stochastic solver on page 4-
12. It lets you compare and analyze fluctuations in the behavior of a model over
repeated stochastic simulations. Because stochastic simulations rely on an element of
probability, sequential runs produce different results. Therefore, multiple stochastic runs
are often needed to determine the probability distribution of the simulation results. Use
the Number of Runs section to define the total number of stochastic simulations. If you
want all the runs to have a consistent time vector, the data must be interpolated using the
linear or zero-order hold method specified in the Interpolation section. By default, the
task saves the time and quantity data of each state at each simulation time step. You can
record the data less often by increasing the value of LogDecimation.

Run Group Simulation

This task lets you simulate each group or patient from grouped data. Suppose that the
data contain measurements of drug plasma concentration at different times for multiple
patients and dosing amount for each patient. You can use this task to simulate each
patient and compare the results to the experimental data.

In the Map Between Data and Model section, you must specify a grouping variable, an
independent variable, and a dependent variable (response). Map at least one response

1 SimBiology Desktop

1-76

data column (Dependent1) to the corresponding model quantity. Similarly, you can map
any dose column (Dose1) to the corresponding model species that is being dosed.

Once you start running the task, it applies any specified dose to the corresponding
species, and simulates each group. It plots the response data column against the
simulated values for the corresponding model quantity. As you compare the simulation
results to experimental data, you can further explore the model behavior under different
parameter values or species initial conditions using the Explorer Tools.

See Also

More About
• “Analysis Workflow” on page 1-62
• “Task Editor” on page 1-65
• “Built-in Tasks” on page 1-68
• “Running Tasks” on page 1-78

 See Also

1-77

Running Tasks
The SimBiology desktop lets you analyze models of dynamic systems using tasks. Each
task is a MATLAB script with a user interface that performs an analysis on the model,
such as simulation, parameter estimation, or sensitivity calculation. You can configure on
page 1-72 a task in the Task Editor on page 1-65. As you configure the task, the
SimBiology desktop updates the corresponding script automatically and lets you view the
task code.

For most tasks, the desktop shows simulation results in the Live Plots area of the Task
Editor on page 1-65 while the tasks are running. There are certain tasks that do not show
any plots. For tasks that support Live Plots, the desktop shows a time plot by default, and
the results are updated live. Certain tasks show additional plots, such as a scan or
sensitivity plot. You can customize these plots. For instance, you can add experimental
data points to compare with simulation results, or select only a few quantities of interest
to plot. For details, see “Configuring Live Plots” on page 1-78.

You can further explore model behavior using the Explorer Tools, which let you alter
parameter values, initial conditions, and dose schedules. Each time you alter the value of
a quantity, the task automatically reruns using the new value, and you can see the
updated results in the Live Plots area. For details, see “Exploring Models” on page 1-
81.

The desktop saves the task results as Last Run (task name - model name). Each
time you run the same task, the results are overwritten. You can save the results under a
different name to avoid overwriting them. The Explorer tab of the Task Editor has options
to save and export simulation data, or navigate on page 1-5 to the Data panel. For details,
see Task Results on page 1-88.

Configuring Live Plots
For most tasks, a time plot of all quantities is shown by default. Depending on the task,
the desktop shows additional plots such as sensitivity or scan plots or may not show any
plot. For those tasks that support Live Plots, you can add more plots by first turning on
Live Plots on the Editor tab and then selecting Add Plots from the Explorer tab.

You can configure what is plotted in each plot. Suppose that you are interested in
selecting model quantities that are plotted in the Live Plots area after a task completes.
Right-click the plot, and select Define States to Plot > Plot State Data > Select.

1 SimBiology Desktop

1-78

The desktop also lets you define a mathematical expression to plot by selecting Define
Math Data to Plot. The expression must be a MATLAB expression that uses any of the
legend names or time as variables. The expression must evaluate to a numeric value. For
instance, suppose that you have concentration–time curves of two species with the legend
names s and sP, where s corresponds to the concentration of an unphosphorylated
protein, and sP corresponds to the phosphorylated concentration. You can add a plot to
see the fraction of phosphorylated protein by entering sP./(s+sP) as an expression,
where s+sP represents the total concentration of the protein. Another example would be
to plot the amount of a species in terms of concentration. To do so, first add a plot entry
for the species S and another for the compartment V via Define States of Plot. Then
define the mathematical expression S./V, which plots the species concentration instead
of amount.

You can add experimental data to the time plot to compare with the simulation results by
selecting Plot External Data > Add. You can select a data set that is in the MATLAB
workspace or load one from a file.

To configure axes and line properties of a plot, select Properties from the context menu
of the plot. For instance, you can specify a linear or log scale for the x- or y-axis of each
plot.

To highlight a line or data point of a simulated quantity in the plot, you can click its name
in the legend. You can also click a line or data point, and the corresponding legend name
is highlighted. Use this highlighting feature to look at the simulation data of a specific
quantity among many others, or to see which quantity corresponds to the simulation data
that you are interested in.

You can overlay results from each task run to compare simulation data. Select Overlay
Results from the Explorer tab. Then every time you run the task, the desktop plots the
results from the current run on top of the results from previous runs. For example,
suppose that you can have a set of values for immunological parameters of a healthy
person represented by a variant and a different set of values for a cancer patient
represented by another variant. You can then simulate the model with each variant and
overlay the predictions for both cases to see the changes in model behavior.

Most tasks show one or more plots while they are running. Details on the plots for the
most common tasks are described in the following sections.

 Running Tasks

1-79

Simulation

This task shows a time plot of all simulated quantities. You can disable the automatic
creation of the time plot when you run the task in the Preferences > Tasks > Create
line plot in Task Explorer on Simulation Task run.

Calculate Sensitivities

This task shows a time plot and a sensitivity plot. The sensitivity plot is shown after the
task finishes running. The plot displays the time-dependent sensitivities to parameter
values and initial conditions as a bar graph. Use the context menu of the plot for more
options, such as sorting the values in an ascending or descending order. You can disable
the automatic creation of the sensitivity plot by clearing Preferences > Tasks > Create
sensitivity plot in Task Explorer on Sensitivity Task run completion.

Run Scan

This task shows a scan plot and a time plot. For each parameter scan, the desktop
performs a mathematical evaluation on the simulation data and returns a scalar value.
The scan plot plots this value versus the scan parameter. You can add more scan plots by
selecting Add Plot > Scan Plot on the Editor tab. Then you can define the mathematical
expression to evaluate by selecting Plot Math Data > Add.

You must define the expression as out = expression, and the expression must return a
scalar. In the scan plot, the evaluated results (out) are plotted on the y-axis and the scan
parameter on the x-axis. If you have multiple scan variables, you can select which scan
parameter is plotted on the x-axis. In the expression, you can refer to any quantity by its
name. If the name of a quantity is not a valid MATLAB variable name, enclose it in square
brackets, such as [DNA polymerase+]. To check if the expression has any errors or
warning, click Verify.

You can disable the automatic creation of the scan plot by clearing Preferences > Tasks
> Create scan plot in Task Explorer on Scan Task run.

As an illustration, the scan plot shows the maximum value of the first quantity in the time
plot versus the scan variable. You can write custom MATLAB code to plot. For instance,
suppose Drug_Central is the name of a species that represents the concentration of the
drug in the system, and time is the simulation time variable. You can plot the time point at
which the drug concentration is at its maximum using the following expression.

out = time(Drug_Central == max(Drug_Central));

1 SimBiology Desktop

1-80

Run Scan with Sensitivities

This task combines the Calculate Sensitivities and Run Scan tasks. It shows a scan plot
and time plot. As an illustration, the scan plot shows time-dependent sensitivities of the
first quantity with respect to the scan parameter. For details on how to configure a scan
plot, see “Run Scan” on page 1-80. You can disable the automatic creation of the scan plot
by clearing Preferences > Tasks > Create scan plot in Task Explorer on Scan with
Sensitivities Task run.

Run Group Simulation

This task shows a trellis time plot, where each subplot represents a group or an
individual. The plot shows the response data against the simulated values for each group.
If you have multiple responses, you can select responses to plot by selecting Edit
Properties on the Explorer tab.

Fit Data

Instead of Live Plots, this task shows the Progress Plot that provides live feedback on
the status of the fit, except when using nlinfit as the estimation method. For instance,
it displays fitting quality measures, such as the log-likelihood, and estimated parameter
values for each function iteration. The Progress Plot opens in a new figure window. This
task does not support plots in the Live Plots area or the Explorer Tools.

To turn off the Progress Plot, clear Show progress of the Fit Data task in the
Algorithm Settings section. For details, see “Progress Plot” on page 4-63.

Exploring Models
The SimBiology desktop provides explorer tools that let you iterate through different
parameter values, initial conditions, and dosing schedules without modifying the base
model. When you change a value, the desktop automatically reruns the task using the new
value, and the results are updated in the Live Plots. You can overlay results from each
run to see the changes in model behavior. For a summary of quantity values used for each
run, open the MultiRun Viewer from the Explorer tab. You can also calculate statistics,
such as the area under the curve of a drug concentration profile, to gain additional
insight.

You can turn the Explorer Tools on and off by selecting Explorer on the Editor tab. If
you turn it off, the desktop does not use the values defined in the tools during the task
run.

 Running Tasks

1-81

Adjust Quantities

You can explore how changes to quantity values affect the model behavior. To add a
quantity to explore, select Define Quantities to Adjust from the Options menu. The
desktop adds a slider for you to change the quantity value. Each time you move the slider,
the desktop reruns the task using the new slider value by default. You can overlay the
simulation results from each run and compare them.

Use the Options menu to configure the slider behavior and properties. For instance, to
stop the task from being run each time you move the slider, clear Run Task When
Quantity Changes Value. To change the range of the slider, select Define Slider
Properties.

Adjust Doses

An increase in a species amount or concentration due to an external stimulus, such as an
oral or intravenous administration of a drug, can be modeled using an element called a
dose. The Adjust Doses tool lets you create doses to explore different dosing regimens
and their effects on the model behavior.

To add a dose to explore, select Create Dose Schedule to Explore from the Options
menu. A dose plot is shown along with the dose properties that you can adjust. To add
doses at specific times and values, first click the green plus button on the right of the
plot, and then click inside the plot. You can use the sliders to adjust the dose properties
such as dose amount or dose time. To remove a dose, select the corresponding line in the
plot. Then click the red minus button on the right of the plot. Any unchecked dose is not
applied to the model during the task run.

You can also explore an existing dose by selecting Choose Existing Dose to Explore.
When exploring, the desktop does not change the existing dose properties. To avoid
double dosing, do not select the same dose in the Doses to Apply section of the task.

1 SimBiology Desktop

1-82

Calculate Statistics

You can evaluate a mathematical expression on the simulation results. The expression can
be any valid MATLAB expression that returns a numeric value. In your expression, you
can refer to any quantity by its name. If the name of a quantity is not a valid MATLAB
variable name, enclose it in square brackets such as [DNA polymerase+]. You can also
refer to the simulation time variable as time. To add an expression, select Define
Statistics to Calculate from the Options menu. For instance, to calculate the AUC (area
under the curve) of the concentration-time curve of a drug, use the expression
trapz(time,Drug).

For a task that runs multiple simulations, such as the Run Scan task, the desktop
evaluates the expression at the end of each simulation. Open MultiRun Viewer to view
all the calculated results.

 Running Tasks

1-83

See Also

More About
• “Configuring Tasks” on page 1-72
• “Task Editor” on page 1-65
• “Built-in Tasks” on page 1-68
• “Analysis Workflow” on page 1-62

1 SimBiology Desktop

1-84

External Data and Task Results
SimBiology lets you build models of dynamic systems and perform model analyses using
available research data. For instance, you can import time-course data from experiments,
preprocess data, and use data in analysis tasks on page 1-68, such as parameter
estimation. Task results are generated by each task after it finishes running, and consist
of simulation data, summary of simulation options and task settings used during the task
run, and plots for data visualization and exploration.

You can import data from several file formats, such as Excel files (.xls, .xlsx), text files
(.csv, .txt), and SAS® XPORT files (.xpt). NONMEM®-formatted data are also supported,
and SimBiology interprets the columns according to the NONMEM definitions. For
details, see Importing Data-Supported Files and Data Types on page 5-6. You can also
import grouped data which have multiple groups of observations, such as measured
concentrations from multiple patients.

In addition, SimBiology lets you import variables from the MATLAB workspace. If
variables have the same dimension, you can concatenate them horizontally by multiple
selection (Ctrl + click or Command + click on a Mac).

You can edit column names while importing. After imported, the names are final, and
SimBiology refers to the columns by those names in subsequent workflows such as
plotting or fitting the data. To edit, double-click the name of a column in the Data
Preview section of the Import dialog box.

Both external data and task results are saved in a SimBiology project (*.sbproj). They
are accessible from the project panel in the workspace area on page 1-5 of the desktop.
Select Project in the address bar and double-click the data set or task result to open it.
The desktop then displays the corresponding contents in the workspace area. The next
figure shows an example of the project workspace and an external data set when open.

 External Data and Task Results

1-85

You can visualize data using various built-in plots, such as time or scatter plots. First open
the data and select the plot type from the drop-down menu on the Define Plot tab. Then
define the corresponding input arguments for the plot. If you have grouped data, you can
create a trellis plot where each group is plotted on a separate axis.

To add more plots, select Blank Figure on the Define Plot tab. Plots are shown as
separate figure tabs in the workspace area. You can open and close the tabs. To reopen
any closed tab, select it from the Open drop-down menu. To remove a figure from the
project permanently, select Delete Figure.

The desktop provides built-in tools to help you explore data. For instance, you can take a
closer look at a particular area of the plot by zooming in. To query the values of data
points, select Data Cursor on the Define Plot tab and then click a data point.

You can also export data to MATLAB workspace as separate variables, a dataset, or
SimData object. In addition, you can export task results to a MAT or Excel file.

External Data
You can open any imported data set from the project panel. Each external data set
appears as a table on the Raw Data tab in the workspace area. The table shows the

1 SimBiology Desktop

1-86

values of each data column. You can classify the columns as a group variable,
independent variable, dependent variable, covariate, dose amount, and dose rate
variables from the drop-down menu of each column. You can also specify the
corresponding unit for each column. SimBiology uses these data classifications
accordingly in analysis tasks. For instance, the Group Simulation task on page 1-76 uses
the independent and dependent variables to plot the data while applying the dose
amounts from the dose column to each group during simulation.

The desktop lets you preprocess data by excluding data points, such as outliers. Excluded
data points are not used during model analyses such as data fitting. The excluded rows in
the data are grayed out on the Raw Data tab. If you have any plots, these data points are
labeled as Excluded data. To define exclusion rules or edit existing ones, select Edit
Exclusions on the Explore Data tab and enter a valid MATLAB expression. You can refer
to the column names in your expressions. Alternatively, you can use the drop-down menus
from the exclusion editor to select a column and operator to define the expression. For
instance, the next figure shows an expression rule to exclude any data points recorded
after Time > 5.

You can transform data to make them easier to visualize or improve interpretability. To
add a new column of derived data from one or more existing columns using a MATLAB
expression, select Edit Derived Data on the Explore Data tab and enter the expression.
For instance, if you want to log-transform the measured drug concentrations, enter
log(Conc) where Conc is the name of the concentration column in your data.

The desktop also lets you compare time-course data to simulation results. To compare,
add the data to the time plot of simulated quantities in the Live Plots area of the task
editor on page 1-65. Right-click the time plot and select Define External Data to Plot.

 External Data and Task Results

1-87

If you have the time course of measured drug concentrations, you can calculate
pharmacokinetic (PK) parameters of the drug using non-compartmental analysis (NCA).
To see a table of PK parameters, select Open > NCA on the Define Plot tab. For details,
see NCA on page 4-121.

Task Results
Task results are saved as Last Run (task name - model name) after each run. If
you rerun the same task, the results are overwritten. To avoid overwriting them, save the
results with a different name. Right-click the Last Run result of the task from the project
panel in the workspace area and select Save Data.

When you open task results, the desktop shows the Summary tab and other figure tabs in
the workspace area. The Summary tab contains the details of the task, such as
simulation and compile options used during the task run. Generated plots, that is, plots
specified in the Plots to Generate section of the task, are shown in separate tabs. To edit
properties of each plot, such as changing x-axis or y-axis to a log scale, select Edit
Properties on the Define Plot tab.

In addition to generated plots, you can add new plots to visualize the results in different
ways and gain additional insight. For instance, you can explore the relationship between
two variables by adding an XY plot or check the quality of a fit with additional residual
plots.

To view or export simulation data, select View or Export on the Define Plot tab. You can
export the results to the MATLAB workspace and other files, such as MAT or Excel files.

The next figure is an example of simulation task results from a two-compartment model
showing the concentration–time profile of a drug in the Central and Peripheral
compartments.

1 SimBiology Desktop

1-88

Tip You can navigate to the task results panel from the task editor on page 1-65 by
selecting Go To on the Editor tab. You can also save the task results by selecting Save.

See Also
More About
• “Importing Data — Supported Files and Data Types” on page 5-6
• “Import Data from a NONMEM-Format File Using the SimBiology Desktop” on page

5-15

 See Also

1-89

• “Analysis Workflow” on page 1-62
• “Task Editor” on page 1-65
• “Built-in Tasks” on page 1-68
• “Noncompartmental Analysis” on page 4-121

1 SimBiology Desktop

1-90

Modeling

• “What is a Model?” on page 2-2
• “Species Object” on page 2-6
• “Definitions and Evaluations of Reactions” on page 2-10
• “Definitions and Evaluations of Rules” on page 2-17
• “Events” on page 2-30
• “Variants” on page 2-40
• “Doses” on page 2-42
• “Simulate Biological Variability of the Yeast G Protein Cycle Using the Wild-Type and

Mutant Strains” on page 2-47
• “Create and Simulate a Model with a Custom Function” on page 2-49
• “View Model Equations” on page 2-57
• “Component Usage” on page 2-58
• “Evaluation of Model Component Names in Expressions” on page 2-61

2

What is a Model?
In this section...
“Model Definition” on page 2-2
“Expressions” on page 2-2
“Quantities” on page 2-3
“Model Hierarchy” on page 2-4
“Representing a Model” on page 2-4

Model Definition
A SimBiology model is composed of a set of expressions (reactions, differential equations,
discrete events), which together describe the dynamics of a biological system. You write
expressions in terms of quantities (compartments, species, parameters), which are also
enumerated in the model.

Expressions
There are three distinct types of expressions in SimBiology:

• Reactions
• Rules
• Events

Reactions

A reaction describes a process such as a transformation, transport, or binding/unbinding
process between reactants and products.

Example reactions include:

Creatine + ATP <-> ADP + phosphocreatine
cytoplasm.speciesA -> nucleus.speciesA

Rules

A rule is a class of mathematical expressions that include differential equations, initial
assignments, repeated assignments, and algebraic constraints.

2 Modeling

2-2

For example, you can use a rule to:

• Specify values for model components that are required for comparison with
experimental data. For example, specify the active fraction of total protein.

• Assign values to model components based on the values of other components in the
model. For example, define a parameter's value as being proportional to a species or
another parameter.

• Define mass balance equations.
• For species, use rate rules as an alternative to the differential rate expression

generated from reactions.

Events

An event describes an instantaneous change in the value of a quantity (compartment,
species, parameter). The discrete transition occurs when a user-specified condition
becomes true. The condition can be a specific time or a specific time-independent
condition.

For example, you can use an event to:

• Activate or deactivate a specific species (activator or inhibitor species).
• Change a parameter value based on external signals.
• Change reaction rates in response to addition or removal of a species.
• Replicate an experimental condition, such as the addition or removal of an activating

agent (such as a drug) to or from a sample.

Quantities
SimBiology uses three types of quantities in models:

• Compartments
• Species
• Parameters

Compartments

A compartment defines a physically bounded region that contains species. A compartment
is characterized by a capacity expressed as volume, area, or length. A compartment can
also contain other compartments, which adds hierarchy to a model. For example, a

 What is a Model?

2-3

compartment named cytoplasm might contain a compartment named nucleus, thereby
partitioning species based on their location.

Species

A species characterizes the state of the biological system by representing the amount (or
concentration) present in the system for that entity. Examples of species are DNA, ATP,
and creatine. Species' amounts (or concentrations) vary during a simulation as a result
of their participation in reactions, differential equations, and events. Therefore, species
represent the dynamical state of a biological system.

Parameters

A parameter is a quantity that is referred to by expressions. It typically remains constant
during a simulation. For example, parameters are used as rate constants in reactions.

You can configure a parameter to vary during a simulation. This is useful, for example, to
model the change in a reaction rate given the concentration of a catalyst or a change in
temperature.

Model Hierarchy
Note the following conditions imposed on quantities in the model hierarchy:

• Models must contain at least one compartment.
• A compartment can contain one or more compartments.
• Species are always contained within a compartment.

Representing a Model
In SimBiology, models and their components are implemented as objects. These objects
have properties and methods that you can use to access and configure them. Use the get
method to list the property values of an object. Use the dot notation to change the
property values of an object.

SimBiology objects are handle objects, which has implications for how they behave during
copy operations. Handle objects are referenced by their handle variable, and copies of the
handle variable refer to the same object. To learn how handle objects affect copy
operations, see Copying Objects (MATLAB).

2 Modeling

2-4

See Also
Model

 See Also

2-5

Species Object
A species object represents a species, which is the amount of a chemical or entity
that participates in reactions. A species is always scoped to a compartment.

When adding species to a model with multiple compartments, you must specify qualified
names, using compartmentName.speciesName. For example, nucleus.DNA denotes the
species DNA in the compartment nucleus.

For information about... See...
Creating and adding a species to a model addspecies
Methods and properties of a species species object

How Species Amounts Change During Simulations
The amount of a species can remain constant or vary during the simulation of a model.
Use the following properties of a species object to specify how the amount of a
species changes during a simulation:

• ConstantAmount property — When set to true, the species amount does not change
during a simulation. The species can be part of a reaction or rule, but the reaction or
rule cannot change its amount. When set to false, the species amount is determined
by a reaction or a rule, but not both.

• BoundaryCondition property — When set to true, the species amount is either
constant or determined by a rule, but not determined by a chemical reaction. In other
words, the simulation does not create a differential rate term from the reactions for
this species, even if it is in a reaction, but it can have a differential rate term created
from a rule.

Keeping a Species Amount Unchanged
Set ConstantAmount to true and BoundaryCondition to false for a constant
species, whose amount is not changed by a reaction or rule. In this case, the species acts
like a parameter. It cannot be in a reaction, and it cannot be varied by a rule.

ConstantAmount BoundaryCondition Reaction Rule Changed By
True False No No Never

2 Modeling

2-6

Example — Species E is not part of the reaction, but it is part of the reaction rate
equation. E is constant and could be replaced with the constant Vm = k2*E.

 reaction: S -> P
reaction rate: kcat*E*S/(Km + S)

Changing a Species Amount with a Reaction or Rule
Set ConstantAmount to false and BoundaryCondition to false for a species whose
amount is changed by a reaction or rule, but not both.

ConstantAmount BoundaryCondition Reaction Rule Changed By
False False Yes No Reaction
False False No Yes Rule

Example 1 — Species A is part of a reaction, and it is in the reaction rate equation. The
species amount or concentration is determined by the reaction. This is the most common
category of a species. A differential rate equation for the species is created from the
reactions.

 reaction: A -> B
reaction rate: k*A

Example 2 — Species E is not part of the reaction, but it is in the reaction rate equation.
E varies with another reaction or rule.

 reaction: S -> P
reaction rate: kcat*E*S/(Km + S)

Example 3 — Species G is not part of a reaction, and it is not in a rate equation. G varies
with an algebraic rule or rate rule.

 rate rule: dG/dt = k

Changing a Species Amount with a Rule When Species is Part
of a Reaction
Set ConstantAmount to false and BoundaryCondition to true for a species whose
amount is changed by a rule, but the species is also part of a reaction, and a differential
rate term from the reaction is not created. The amount of the species changes with the
rule, and a differential rate term is created from the rule.

 Species Object

2-7

ConstantAmount BoundaryCondition Reaction Rule Changed By
False True Yes Yes Rule

Example 1 — Species A is not changed by the rate equation, but changes according to a
rate rule. However, A could be in the rate equation that changes other species in the
reaction.

 reaction: A -> B
reaction rate: k1 or k1*A
 rate rule: dA/dt = k2*A (solution is A = k2*t)
 (enter in SimBiology as A = k2*A)

Example 2 — Species A is not in the rate equation, but changes according to an
algebraic rule.

 reaction: A -> B + C
 reaction rate: k or k*A
algebraic rule: A = 2*C
 (enter in SimBiology as 2*C - A)

Keeping a Species Amount Unchanged When Species is Part of
a Reaction that Adds or Removes Mass
Set ConstantAmount to false and BoundaryCondition to true for a constant species
that is part of a reaction, but a differential rate term is not created from the reaction. The
differential rate term is created from a rule.

ConstantAmount BoundaryCondition Reaction Rule Changed By
True True Yes No Never

During simulation, a differential rate equation is not created for the species.
dSpecies/dt does not exist.

Example 1 — A is a infinite source and its amount does not change. B increases
with a zero order rate (k and k*A are both constants). A source refers to a species where
mass is added to the system.

 reaction: A -> B
reaction rate: k or k*A

2 Modeling

2-8

Example 2 — B decreases with a first-order rate, but A is an infinite sink and its
amount does not change. A sink refers to a species where mass is subtracted from the
system.

 reaction: B -> A
reaction rate: k*B

Example 3 — The null species is a reserved species name that can act as a source or a
sink.

 reaction: null -> B
reaction rate: k

 reaction: B -> null
reaction rate: k*B

Example 4 — ATP and ADP are in the reaction and have constant values, but they are
not in the reaction rate equation.

 reaction: S + ATP -> P + ADP
reaction rate: Vm*S/(Km + S)

 Species Object

2-9

Definitions and Evaluations of Reactions
A reaction is a mathematical expression that describe a transformation, transport, or
binding process that changes one or more species. Typically, an amount of a species is
changed through a reaction.

In SimBiology, a reaction is represented by a reaction object, which has the following
properties.

• Reaction property — Mathematical expression that describes the reaction
• ReactionRate property — Mathematical expression that defines the rate at which the

reactants combine to form products. You can provide this information explicitly or use
the KineticLaw property to populate this information.

• KineticLaw property — Object that specifies a rate law that defines the type of
reaction rate. Examples include Henri-Michaelis-Menten and Mass Action. The object
also specifies species objects, or parameter objects. This property is optional.
It serves as a template for a reaction rate and provides a convenient way of applying a
specific rate law to multiple reactions. If you use this property, it automatically
populates the ReactionRate property.

A reaction is scoped to a model.

For information about... See...
Creating and adding a reaction to a model addreaction
Methods and properties of a reaction reaction object
Creating and adding a kinetic law to a
reaction

addkineticlaw

Methods and properties of a kinetic law KineticLaw object

Writing Reaction Expressions
Use standard chemistry reaction notation to create the mathematical expression for a
reaction (Reaction property of a reaction object).

Following are rules for writing reaction expressions:

• Use spaces before and after species names and stoichiometric values.

2 Modeling

2-10

• Stoichiometry values must be positive.
• If a stoichiometry value is not specified, it is assumed to be 1.
• In a model with a single compartment, specify species using speciesName. In a model

with multiple compartments, specify species using qualified names:
compartmentName.speciesName. For example, nucleus.DNA denotes the species
DNA in the compartment nucleus.

• Enclose names with non-alphanumeric characters (including spaces) in brackets.
• Reactions can be reversible (<->) or irreversible (->).

Examples of reaction expressions include:

Creatine + ATP <-> ADP + phosphocreatine
glucose + 2 ADP + 2 Pi -> 2 lactic acid + 2 ATP + 2 H2O
cytoplasm.A -> nucleus.A
[compartment 1].[species A] -> [compartment 2].[species A]

Note Same species can be used multiple times in the list of reactions or products. The
expression '2 A' is equivalent to 'A + A'.

Writing Reaction Rate Expressions Explicitly
Use any valid MATLAB code to create the mathematical expression for a reaction rate
(ReactionRate property of a reaction object). The reaction rate can specify
compartments, species, or parameters.

Following are rules for writing reaction rate expressions:

• The expression must be a single MATLAB statement that returns a scalar.
• In a model with a single compartment, specify species using speciesName. In a model

with multiple compartments, specify species using qualified names:
compartmentName.speciesName. For example, nucleus.DNA denotes the species
DNA in the compartment nucleus.

• Enclose names with non-alphanumeric characters (including spaces) in brackets.
• Do not end the reaction rate expression with any of the following:

• Semicolon
• Comma

 Definitions and Evaluations of Reactions

2-11

• Comment text preceded by %
• Line continuations indicated by ...

For example, if you have the following reaction expression:

Creatine + ATP <-> ADP + phosphocreatine

and the reaction follows Mass Action kinetics, then the reaction rate expression would be:

K*Creatine*ATP - Krev*ADP*phosphocreatine

Tip If your reaction rate expression is not continuous and differentiable, see “Using
Events to Address Discontinuities in Rule and Reaction Rate Expressions” on page 2-38
before simulating your model.

Creating Reaction Rate Expressions Using Kinetic Law Objects
A KineticLaw object is scoped to a reaction and specifies:

• A rate law that defines the type of reaction rate. Examples include Henri-Michaelis-
Menten and Mass Action.

• species and parameters

A KineticLaw object serves as a template for a reaction rate and provides a
convenient way of applying a specific rate law to multiple reactions. You can use this
object to create a reaction rate, which populates the ReactionRate property of the
reaction object.

For example, if you create a KineticLaw object that specifies Henri-Michaelis-Menten
for the KineticLawName, species S, and parameters Vm and Km, the reaction rate law is:

Vm * S/(Km + S)

Then if you create a reaction object that specifies the previous KineticLaw object
and species the following reaction expression:

A -> B

with Vm = Va and Km = Ka and S = A, then the reaction rate equation is:

Va*A/(Ka + A)

2 Modeling

2-12

Examples of Creating Reaction Rates
Example of Creating a Zero-Order Reaction

With a zero-order reaction, the reaction rate does not depend on the concentration of
reactants. Examples of zero-order reactions are synthesis from a null species, and
modeling a source species that is added to the system at a specified rate.

 reaction: null -> P
reaction rate: k mole/second
 species: P = 0 mole
 parameters: k = 1 mole/second

Note When specifying a null species, the reaction rate must be defined in units of
amount per unit time not concentration per unit time.

Entering the reaction above into the software and simulating produces the following
result:

Zero-Order Mass Action Kinetics

 Definitions and Evaluations of Reactions

2-13

Note If the amount of a reactant with zero-order kinetics reaches zero before the end of
a simulation, then the amount of reactant can go below zero regardless of the solver or
tolerances you set.

Examples of Creating Other Reactions

For examples of creating other reaction rates, see “Define Reaction Rates with Mass
Action Kinetics” on page A-2 and “Define Reaction Rates with Enzyme Kinetics” on
page A-8.

How Reaction Rates Are Evaluated
Reaction Rate Dimensions

When calculating species fluxes, SimBiology must determine whether you specified
reaction rates in dimensions of amount/time or concentration/time. When all
compartments in a model have a capacity of one unit, amount and concentration are
numerically equivalent.

For all other models, the numerical results of the simulation depend on which
interpretation SimBiology selects. SimBiology determines whether a reaction rate is in
dimensions of amount/time or concentration/time via dimensional analysis of
ReactionRate expressions. This minimum level of dimensional analysis always occurs,
even when DimensionalAnalysis and UnitConversion are off.

The DefaultSpeciesDimension property defines the dimensions of species appearing
in a reaction rate. SimBiology infers the dimensions of parameters appearing in a reaction
rate from their ValueUnits property. If any parameters appearing in a reaction rate
expression do not have units, SimBiology interprets the reaction rate in dimensions of
amount/time. Therefore, the only way to specify that a reaction rate has dimensions of
concentration/time is to assign appropriate units to all parameters.

Reactions Spanning Multiple Compartments

Specify reactions that span compartments using the syntax
compartment1Name.species1Name –> compartment2Name.species2Name. The
reaction rate dimensions must resolve to amount/time if either of the following conditions
are true:

• Reactant species are in different compartments.

2 Modeling

2-14

• The reaction is reversible mass action and the products are in multiple compartments.

Examples

Consider a reaction a + b —> c. Using mass action kinetics, the reaction rate is k*a*b,
where k is the rate constant of the reaction. If you specify that initial amounts of a and b
are 0.01 molarity and 0.005 molarity respectively, then the reaction rate is in
concentration/time (and units of molarity/second) if the units of k are 1/
(molarity*second). If you specify k with another equivalent unit definition, for
example, 1/((moles/liter)*second), SimBiology checks whether the physical
quantities match. If the physical quantities do not match, you see an error and the model
is not simulated.

If, in the previous example, you specify that initial amounts of a and b are 0.01 and
0.005 respectively, without specifying units, SimBiology checks whether
DefaultSpeciesDimension is substance or concentration. If
DefaultSpeciesDimension is concentration, and you set units on the rate constant
such that the reaction rate dimensions resolve to concentration/time, SimBiology scales
the species amounts for compartment capacity, and returns the species values in
concentration.

If you specify initial amounts of a and b as 0.01 molarity and 0.005 mole
respectively, include the volume scaling for b in the reaction rate expression. Include
volume scaling in the rate constant, and set the units of the rate constant accordingly (1/
(mole*second) for concentration/time, or 1/(molarity*second) for amount/time).

Viewing Equations for Reactions
You can view the system of equations that SimBiology creates when you build a model
using reaction expressions. For details, see “View Model Equations” on page 2-57.

See Also

More About
• “Create and Simulate a Model with a Custom Function” on page 2-49
• “Model Simulation” on page 4-3
• “Deriving ODEs from Reactions” on page 4-5

 See Also

2-15

• “What is a Model?” on page 2-2
• “Definitions and Evaluations of Rules” on page 2-17
• “Events” on page 2-30
• “Component Usage” on page 2-58
• “Evaluation of Model Component Names in Expressions” on page 2-61

2 Modeling

2-16

Definitions and Evaluations of Rules

In this section...
“Overview” on page 2-17
“Initial Assignment” on page 2-17
“Repeated Assignment” on page 2-18
“Algebraic Rules” on page 2-18
“Repeated Assignment vs. Algebraic Rules” on page 2-19
“Rate Rules” on page 2-19
“Evaluation Order of Rules” on page 2-19
“Conservation of Amounts During Simulation” on page 2-20
“Writing Rule Expressions” on page 2-21
“Considerations When Imposing Constraints” on page 2-21
“Rate Rule Examples” on page 2-22

Overview
Rules are mathematical expressions that allow you to define or modify model quantities,
namely compartment capacity, species amount, or parameter value.

Rules can take the form of initial assignments, assignments during the course of a
simulation (repeated assignments), algebraic relationships, or differential equations (rate
rules). Details of each type of rule are described next.

Initial Assignment
An initial assignment rule lets you specify the initial value of a model quantity as a
numeric value or as a function of other model quantities. It is evaluated once at the
beginning of a simulation.

An initial assignment rule is expressed as Variable = Expression, and the rule is
specified as the Expression. For example, you could write an initial assignment rule to
set the initial amount of species2 to be proportional to species1 as species2 = k *
species1 where k is a constant parameter.

 Definitions and Evaluations of Rules

2-17

Repeated Assignment
A repeated assignment rule lets you specify the value of a quantity as a numeric value or
as a function of other quantities repeatedly during the simulation. It is evaluated at every
time step, which is determined by the solver during the simulation process.

A repeated assignment rule is expressed as Variable = Expression, and the rule is
specified as the Expression. For example, to repeatedly evaluate the total species
amount by summing up the species in different compartments, you could enter: xTotal
= c1.X + c2.X, where xTotal is a nonconstant parameter, c1 and c2 are the name of
compartments where species x resides.

Algebraic Rules
An algebraic rule lets you specify mathematical constraints on one or more model
quantities that must hold during a simulation. It is evaluated continuously during a
simulation.

An algebraic rule takes the form 0 = Expression, and the rule is specified as the
Expression. For example, if you have a mass conservation equation such as
species_total = species1 + species2, write the corresponding algebraic rule as
species1 + species2 - species_total.

However, repeated assignment rules are mathematically equivalent to algebraic rules, but
result in exact solutions instead of approximated solutions. Therefore, it is recommended
that you use repeated assignment rules instead of algebraic rules whenever possible. Use
algebraic rules only when:

• You cannot analytically solve the equations to get a closed-form solution. For example,
there is no closed-form solution for x^4 + ax^3 + bx^2 + cx + k = 0 whereas
the closed-form solution for kx – c = 0 is x = c/k.

• You have multiple equations with multiple unknowns, and they could be inconvenient
to solve.

If you use an algebraic rule, rate rule, or repeated assignment to vary the value of a
parameter or compartment during the simulation, make sure the ConstantValue
property of the parameter or ConstantCapacity of the compartment is set to false.

2 Modeling

2-18

Repeated Assignment vs. Algebraic Rules
Repeated assignment rules are mathematically equivalent to algebraic rules, but result in
exact solutions. However, algebraic rules are solved numerically, and the accuracy
depends on the error tolerances specified in the simulation settings. In addition, there are
several advantages to repeated assignment rules such as better computational
performance, more accurate results since no rules have to be solved numerically (hence
no approximations), and sensitivity analysis support.

Tip

• If you can analytically solve for a variable, use a repeated assignment rule instead of
an algebraic rule.

• In repeated assignment rules, the constrained variable is explicitly defined as the left-
hand side, whereas in algebraic rules it is inferred from the degrees of freedom in the
system of equations. See also “Considerations When Imposing Constraints” on page 2-
21.

Rate Rules
A rate rule represents a differential equation and lets you specify the time derivative of a
model quantity. It is evaluated continuously during a simulation.

A rate rule is represented as dVariable
dt = Expression, which is expressed in SimBiology

as Variable = Expression. For example, if you have a differential equation for species
x, dx

dt = k(y + z), write the rate rule as: x = k * (y + z).

For more examples, see “Rate Rule Examples” on page 2-22.

Evaluation Order of Rules
At the start of the simulation (that is, at simulation time = 0), SimBiology evaluates the
initial assignment and repeated assignment rules as a set of simultaneous constraints.
SimBiology treats the rules as a unified system of constraints and automatically reorders
and evaluates them. The order in which the rules appear in the model has no effect on the
simulation results.

 Definitions and Evaluations of Rules

2-19

If a quantity is being modified by an assignment rule, the rule replaces initial value
properties, such as InitialAmount, Capacity, or Value. Similarly, a variant altering
such quantities has no effect because the value is superseded by the assignment rules.

SimBiology throws an error if the model has circular dependencies in the initial
assignment and repeated assignment rules. In other words, initial assignments and
repeated assignments cannot have a variable that is explicitly or implicitly referenced on
both the left- and right-hand sides of the equation.

For instance, you cannot create circular sets of assignments such as a = b + 1 and b =
a + 1, where a and b are explicitly referenced on both sides of the equation. An example
of an implicit reference is when an assignment rule references a species in concentration.
In this case, the compartment that contains the species is implicitly referenced.

Compatibility Considerations
You might observe different simulation results with respect to initial assignments for
previous releases of SimBiology (R2017a or earlier). To recover the same simulation
results at time = 0, as in R2017a or earlier, use the updateInitialAssignments
function in the command line. If you are using the SimBiology desktop, right-click the
model from the Project Workspace and select Remove Order Dependencies.

Conservation of Amounts During Simulation
During a simulation (that is, at simulation time > 0), SimBiology conserves species
amounts rather than concentrations if there are any changes to the volume of a
compartment where the species reside. In other words, if you have a repeated assignment
rule or an event that changes the volume, then you see the effect of conservation of
species amounts at time > 0.

However, at the beginning of a simulation (that is, at simulation time = 0), the concept of
amount conservation does not apply because there are no changes before time = 0. Only
one set of initial conditions exists and SimBiology uses the conditions at the start of the
simulation. Specifically, at time = 0, SimBiology:

1 Initializes variables for species, compartments, and parameters using the
corresponding InitialAmount, Capacity, and Value properties.

2 Updates the values by replacing them with the corresponding alternate values from
variants, if any.

2 Modeling

2-20

3 Updates the values by evaluating initial assignment and repeated assignment rules as
a set of simultaneous constraints. Therefore, the assignment rules replace initial
values if model quantities are being modified by such rules or variants.

Compatibility Considerations
In previous releases (R2017a or earlier), if a repeated assignment changed a
compartment volume, SimBiology used the compartment capacity to determine the initial
amount and conserved it when the compartment volume changed at time = 0. In R2017b
or later, SimBiology uses the InitialAmount property of the species as the initial
condition at time = 0. Consider the following model.

m = sbiomodel('m1')
v = addcompartment(m,'v',10,'ConstantCapacity',0,'CapacityUnit','liter')
p = addparameter(m,'p','ValueUnit','liter')
r = addrule(m,'v = 100 * p','repeatedAssignment')
s = addspecies(v,'s',50,'InitialAmountUnit','milligram/liter')

In R2017a or earlier, SimBiology first calculated the initial amount of s as 50
milligram/liter * 10 liter = 500 milligram, and then applied the repeated
assignment rule v = 100 liter. So, the concentration of s was then calculated and
reported as 500 milligram/100 liter = 5 milligram/liter at time = 0.

In R2017b or later, SimBiology uses the InitialAmount property of species s, and
reports the initial amount of s as 50 milligram/liter instead.

Writing Rule Expressions
Use MATLAB syntax to write a mathematical expression for a rule. Note that no
semicolon or comma is needed at the end of a rule expression. If your algebraic, repeated
assignment, or rate rule expression is not continuous or differentiable, see “Using Events
to Address Discontinuities in Rule and Reaction Rate Expressions” on page 2-38 before
simulating your model.

Considerations When Imposing Constraints
Suppose that you have a species y whose amount is determined by the equation y = m *
x - c. In SimBiology, the algebraic rule to describe this constraint is written as m * x -
c - y. If you want to use this rule to determine the value of y, then m, x, and c must be
variables or constants whose values are known or determined by other equations.

 Definitions and Evaluations of Rules

2-21

Therefore, you must ensure that the system of equations is not overconstrained or
underconstrained. For instance, if you have more equations than unknowns, then the
system is overconstrained. Conversely, if you have more unknowns than the equations,
then the system is underconstrained.

Tip The behavior of an underconstrained system could be fixed by adding additional rules
or by setting the ConstantValue or ConstantCapacity or ConstantAmount property
of some of the components in the model.

Rate Rule Examples
The following examples show how to create rate rules for different applications.

Create a Rate Rule for a Constant Rate of Change

This example shows how to increase the amount or concentration of a species by a
constant value using the zero-order rate rule. For example, suppose species x increases
by a constant rate k. The rate of change is:

dx/dt = k

Set the initial amount of species x to 2, and the value of parameter k to 1. Use the
following commands to set up a SimBiology model accordingly and simulate it.

m = sbiomodel('m');
c = addcompartment(m,'comp');
s = addspecies(m,'x','InitialAmount',2);
p = addparameter(m,'k','Value',1);
r = addrule(m,'x = k','RuleType','rate');
[t,sd,species] = sbiosimulate(m);
plot(t,sd);
legend(species)
xlabel('Time');
ylabel('Species Amount');

2 Modeling

2-22

Alternatively, you could model a constant increase in a species using the Mass Action
reaction null -> x with the forward rate constant k.

clear
m = sbiomodel('m');
c = addcompartment(m,'comp');
s = addspecies(m,'x','InitialAmount',2);
r = addreaction(m,'null -> x');
kl = addkineticlaw(r,'MassAction');
p = addparameter(kl,'k','Value',1);
kl.ParameterVariableNames = 'k';
[t,sd,species] = sbiosimulate(m);
plot(t,sd);
legend(species)

 Definitions and Evaluations of Rules

2-23

xlabel('Time');
ylabel('Species Amount');

Create a Rate Rule for an Exponential Rate of Change

This example shows how to change the amount of a species similar to a first-order
reaction using the first-order rate rule. For example, suppose the species x decays
exponentially. The rate of change of species x is:

dx/dt = − k * x

The analytical solution is:

2 Modeling

2-24

Ct = C0 * e−kt

where Ct is the amount of species at time t, and C0 is the initial amount. Use the following
commands to set up a SimBiology model accordingly and simulate it.

m = sbiomodel('m');
c = addcompartment(m,'comp');
s = addspecies(m,'x','InitialAmount',2);
p = addparameter(m,'k','Value',1);
r = addrule(m,'x = -k * x','RuleType','rate');
[t,sd,species] = sbiosimulate(m);
plot(t,sd);
legend(species);
xlabel('Time');
ylabel('Species Amount');

 Definitions and Evaluations of Rules

2-25

If the amount of a species x is determined by a rate rule and x is also in a reaction, x
must have its BoundaryCondition property set to true. For example, with a reaction a
-> x and a rate rule dx

dt = k * x, set the BoundaryCondition property of species x to
true so that a differential rate term is not created from the reaction. The amount of x is
determined solely by a differential rate term from the rate rule. If the
BoundaryCondition property is set to false, you will get the following error message
such as Invalid rule variable 'x' in rate rule or reaction.

2 Modeling

2-26

Create a Rate Rule to Define a Differential Rate Equation

Many mathematical models in the literature are described with differential rate equations
for the species. You could manually convert the equations to reactions, or you could enter
the equations as rate rules. For example, you could enter the following differential rate
equation for a species C:

dC
dt = vi ‐ vdX C

Kc + C ‐ kdC

as a rate rule in SimBiology: C = vi - (vd*X*C)/(Kc + C) - kd*C

Create a Rate Rule for the Rate of Change That Is Determined by Another
Species

This example shows how to create a rate rule where a species from one reaction can
determine the rate of another reaction if it is in the second reaction rate equation.
Similarly, a species from a reaction can determine the rate of another species if it is in the
rate rule that defines that other species. Suppose you have a SimBiology model with three
species (a, b, and c), one reaction (a -> b), and two parameters (k1 and k2). The rate
equation is defined as b = − k1 * a, and rate rule is dc/dt = k2 * a. The solution for the
species in the reaction are:

a = aoe−k1t, b = ao(1 − e−k1t).

Since the rate rule dc/dt = k2 * a is dependent on the reaction, dc/dt = k2(aoe−k1t). The
solution is:

c = co + k2ao/k1(1 − e−k1t)

Enter the following commands to set up a SimBiology model accordingly and simulate it.

m = sbiomodel('m');
c = addcompartment(m,'comp');
s1 = addspecies(m,'a','InitialAmount',10,'InitialAmountUnits','mole');
s2 = addspecies(m,'b','InitialAmount',0,'InitialAmountUnits','mole');
s3 = addspecies(m,'c','InitialAmount',5,'InitialAmountUnits','mole');
rxn = addreaction(m,'a -> b');
kl = addkineticlaw(rxn,'MassAction');
p1 = addparameter(kl,'k1','Value',1,'ValueUnits','1/second');
rule = addrule(m,'c = k2 * a','RuleType','rate');

 Definitions and Evaluations of Rules

2-27

kl.ParameterVariableNames = 'k1';
p2 = addparameter(m,'k2','Value',1,'ValueUnits','1/second');
[t,sd,species] = sbiosimulate(m);
plot(t,sd);
legend(species);
xlabel('Time');
ylabel('Species Amount');

2 Modeling

2-28

See Also

More About
• “What is a Model?” on page 2-2
• “Definitions and Evaluations of Reactions” on page 2-10
• “Events” on page 2-30
• “Component Usage” on page 2-58
• “Evaluation of Model Component Names in Expressions” on page 2-61

 See Also

2-29

Events
In this section...
“Overview” on page 2-30
“Event Triggers” on page 2-30
“Event Functions” on page 2-31
“Specifying Event Triggers” on page 2-31
“Specifying Event Functions” on page 2-33
“Simulation Solvers for Models Containing Events” on page 2-34
“How Events Are Evaluated” on page 2-34
“Evaluation of Simultaneous Events” on page 2-36
“Evaluation of Multiple Event Functions” on page 2-37
“When One Event Triggers Another Event” on page 2-37
“Cyclical Events” on page 2-38
“Using Events to Address Discontinuities in Rule and Reaction Rate Expressions” on
page 2-38

Overview
In SimBiology, an event is a discrete transition in value of a quantity or expression in a
model. This discrete transition occurs when a customized condition becomes true. The
condition can be a specific time and/or a time-independent condition. Such conditions are
defined in an Event object.

Event Triggers
An event object has a Trigger property that specifies a condition that must be true to
trigger the event to execute.

Typical event triggers are:

• A specific simulation time — Specify that the event must change the amounts or values
of species or parameters. For example, at time = 5 s, increase the amount of an
inhibitor species above the threshold to inhibit a given reaction.

2 Modeling

2-30

• In response to state or changes in the system — Change amounts/values of certain
species/parameters in response to events that are not tied to any specific time. For
example, when species A reaches an amount of 30 molecules, double the value of
reaction rate constant k. Or when temperature reaches 42 °C, inhibit a particular
reaction by setting its reaction rate to zero.

Note Currently, events cannot be triggered at time = 0. However, you can get the event
to happen just after time = 0 by using time > timeSmall as the event trigger where
timeSmall can be a tiny fraction of a second such as 1.0 picosecond.

Event Functions
An event has an EventFcns property that specifies what occurs when the event is
triggered. Event functions can range from simple to complex. For example, an event
function might:

• Change the values of compartments, species, or parameters.
• Double the value of a reaction rate constant.

Specifying Event Triggers
The Trigger property of an event specifies a condition that must become true for an
event to execute. Typically, the condition uses a combination of relational and logical
operators to build a trigger expression.

A trigger can contain the keyword time and relational operators to trigger an event that
occurs at a specific time during the simulation. For example, time >= x. For more
information see the Trigger property.

Use MATLAB syntax to write expressions for event triggers. Note that the expression
must be a single MATLAB statement that returns a logical. No semicolon or comma is
needed at the end of an expression. MATLAB uses specific operator precedence to
evaluate trigger expressions. Precedence levels determine the order in which MATLAB
evaluates an expression. Within each precedence level, operators have equal precedence
and are evaluated from left to right. To find more information on how relational and
logical operators are evaluated see “Relational Operations” (MATLAB) and “Logical
Operations” (MATLAB).

Some examples of triggers are:

 Events

2-31

Trigger Explanation
(time >= 5) && (speciesA <
1000)

Execute the event when the following condition
becomes true:

Time is greater than or equal to 5, and
speciesA is less than 1000.

Tip Using a && (instead of &) evaluates the
first part of the expression for whether the
statement is true or false, and skips evaluating
the second statement if this statement is false.

(time >= 5) || (speciesA <
1000)

Execute the event when the following condition
becomes true:

Time is greater than or equal to 5, or if
speciesA is less than 1000.

(s1 >= 10.0) || (time >= 250)
&& (s2 < 5.0E17)

Execute the event when the following condition
becomes true:

Species, s1 is greater than or equal to 10.0 or,
time is greater than or equal to 250 and
species s2 is less than 5.0E17.

Because of operator precedence, the
expression is treated as if it were (s1
>=10.0) || ((time>= 250) &&
(s2<5.0E17)).

Thus, it is always a good idea to use
parenthesis to explicitly specify the intended
precedence of the statements.

((s1 >= 10.0) || (time >= 250))
&& (s2 < 5.0E17)

Execute the event when the following condition
becomes true:

Species s1 is greater than or equal to 10 or
time is greater than or equal to 250, and
species s2 is less than 5.0E17.

2 Modeling

2-32

Trigger Explanation
((s1 >= 5000.0) && (time >=
250)) || (s2 < 5.0E17)

Execute the event when the following condition
becomes true:

Species s1 is greater than or equal to 5000
and time is greater than or equal to 250, or
species s2 is less than 5.0E17.

Tip If UnitConversion is on and your model has any event, follow the recommendation
below.

Non-dimensionalize any parameters used in the event trigger if they are not already
dimensionless. For example, suppose you have a trigger x > 1, where x is the species
concentration in mole/liter. Non-dimensionalize x by scaling (dividing) it with a constant
such as x/x0 > 1, where x0 is a parameter defined as 1.0 mole/liter. Note that x does not
have to have the same unit as the constant x0, but must be dimensionally consistent with
it. For example, the unit of x can be picomole/liter instead of mole/liter.

Specifying Event Functions
The EventFcns property of an event specifies what occurs when the event is triggered.
You can use an event function to change the value of a compartment, species, or
parameter, or you can specify complex tasks by calling a custom function or script.

Use MATLAB syntax to define expressions for event functions. The expression must be a
single MATLAB assignment statement that includes =, or a cell array of such statements.
No semicolon or comma is needed at the end of the expression.

Following are rules for writing expressions for event functions:

EventFcn Explanation
speciesA = speciesB When the event is executed, set the amount of

speciesA equal to that of speciesB.
k = k/2 When the event is executed, halve the value of the

rate constant k.

 Events

2-33

EventFcn Explanation
{'speciesA = speciesB','k =
k/2'}

When the event is executed, set the amount of
speciesA equal to that of speciesB, and halve the
value of the rate constant k.

kC = my_func(A,B,kC) When the event is executed, call the custom
function my_func(). This function takes three
arguments: The first two arguments are the current
amounts of two species (A and B) during simulation
and the third argument is the current value of a
parameter, kC. The function returns the modified
value of kC as its output.

Simulation Solvers for Models Containing Events
To simulate models containing events, use a deterministic (ODE or SUNDIALS) solver or
the stochastic ssa solver. Other stochastic solvers do not support events. For more
information, see “Choosing a Simulation Solver” on page 4-8.

How Events Are Evaluated
Consider the example of a simple event where you specify that at 4s, you want to assign a
value of 10 to species A.

2 Modeling

2-34

At time = 4 s the trigger becomes true and the event executes. In the previous figure
assuming that 0 is false and 1 is true, when the trigger becomes true, the amount of
species A is set to 10. In theory, with a perfect solver, the event would be executed exactly
at time = 4.00 s. In practice there is a very minute delay (for example you might
notice that the event is executed at time = 4.00001 s). Thus, you must specify that the
trigger can become true at or after 4s, which is time >= 4 s.

Trigger EventFcn
time >= 4 A = 10

The point at which the trigger becomes true is called a rising edge. SimBiology events
execute the EventFcn only at rising edges.

The trigger is evaluated at every time step to check whether the condition specified in the
trigger transitions from false to true. The solver detects and tracks falling edges, which is
when the trigger becomes false, so if another rising edge is encountered, the event is
reexecuted. If a trigger is already true before a simulation starts, then the event does not

 Events

2-35

execute at the start of the simulation. The event is not executed until the solver
encounters a rising edge. Very rarely, the solver might miss a rising edge. An example of
this is when a rising edge follows very quickly after a falling edge, and the step size
results in the solver skipping the transition point.

If the trigger becomes true exactly at the stop time of the simulation, the event might or
might not execute. If you want the event to execute, increase the stop time.

Note Since the rising edge is instantaneous and changes the system state, there are two
values for the state at the same time. The simulation data thus contains the state before
and after the event, but both points are at the same time value. This leads to multiple
values of the system state at a single instant in time.

Evaluation of Simultaneous Events
When two or more trigger conditions simultaneously become true, the solver executes the
events sequentially in the order in which they are listed in the model. You can reorder
events using the reorder method. For example, consider this case.

Event
Number

Trigger EventFcn

1 SpeciesA >= 4 SpeciesB = 10
2 SpeciesC >= 15 SpeciesB = 25

The solver tries to find the rising edge for these events within a certain level of tolerance.
If this results in both events occurring simultaneously, then the value of SpeciesB after
the time step in which these two events occur, will be 25. If you reorder the events to
reverse the event order, then the value of SpeciesB after the time step in which these
two events occur, will be 10.

Consider an example in which you include event functions that change model components
in a dependent fashion. For example, the event function in Event 2, stipulates that
SpeciesB takes the value of SpeciesC.

Event
Number

Trigger EventFcn

1 SpeciesA >= 4 SpeciesC = 10

2 Modeling

2-36

Event
Number

Trigger EventFcn

2 time >= 15 SpeciesB = SpeciesC

Event 1 and Event 2 might or might not occur simultaneously.

• If Event 1 and Event 2 do not occur simultaneously, when Event 2 is triggered,
SpeciesB is assigned the value that SpeciesC has at the time of the event trigger.

• If Event 1 and Event 2 occur simultaneously, the solver executes Event 1 first, then
executes Event 2. In this example, if SpeciesC = 15 when the events are triggered,
after the events are executed, SpeciesC = 10 and SpeciesB = 10.

Evaluation of Multiple Event Functions
Consider an event function in which you specify that the value of a model component
(SpeciesB) depends on the value of model component (SpeciesA), but SpeciesA also is
changed by the event function.

Trigger EventFcn
time >= 4 {'SpeciesA = 10, SpeciesB = SpeciesA'}

The solver stores the value of SpeciesA at the rising edge and before any event functions
are executed and uses this stored value to assign SpeciesB its value. So in this example
if SpeciesA = 15 at the time the event is triggered, after the event is executed,
SpeciesA = 10 and SpeciesB = 15.

When One Event Triggers Another Event
In the next example, Event 1 includes an expression in the event function that causes
Event 2 to be triggered (assuming that SpeciesA has amount less than 5 when Event 1 is
executed).

Event
Number

Trigger EventFcn

1 time >= 5 {'SpeciesA = 10, SpeciesB = 5'}
2 SpeciesA >= 5 SpeciesC = SpeciesB

When Event 1 is triggered, the solver evaluates and executes Event 1 with the result that
SpeciesA = 10 and SpeciesB = 5. Now, the trigger for Event 2 becomes true and the

 Events

2-37

solver executes the event function for Event 2. Thus, SpeciesC = 5 at the end of this
event execution.

You can thus have event cascades of arbitrary length, for example, Event 1 triggers Event
2, which in turn triggers Event 3, and so on.

Cyclical Events
In some situations, a series of events can trigger a cascade that becomes cyclical. Once
you trigger a cyclical set of events, the only way to stop the simulation is by pressing Ctrl
+C. You lose any data acquired in the current simulation. Here is an example of cyclical
events. This example assumes that Species B <= 4 at the start of the cycle.

Event
Number

Trigger EventFcn

1 SpeciesA > 10 {'SpeciesB = 5', 'SpeciesC = 1'}
2 SpeciesB > 4 {'SpeciesC = 10', 'SpeciesA = 1'}
3 SpeciesC > 9 {'SpeciesA = 15', 'SpeciesB = 1'}

Using Events to Address Discontinuities in Rule and Reaction
Rate Expressions
The solvers provided with SimBiology gives inaccurate results when the following
expressions are not continuous and differentiable:

• Repeated assignment rule
• Algebraic rule
• Rate rule
• Reaction rate

Either ensure that the previous expressions are continuous and differentiable or use
events to reset the solver at the discontinuity, as described in “Deterministic Simulation of
a Model Containing a Discontinuity”.

2 Modeling

2-38

See Also

More About
• “What is a Model?” on page 2-2
• “Definitions and Evaluations of Reactions” on page 2-10
• “Definitions and Evaluations of Rules” on page 2-17
• “Component Usage” on page 2-58
• “Evaluation of Model Component Names in Expressions” on page 2-61

 See Also

2-39

Variants
A variant stores alternate values of model parameters and initial conditions. You can use
variants to evaluate model behavior under different experimental or initial conditions,
without having to change the existing values or create additional models with the new
values.

A variant lets you store an alternate value for any of the following model elements:

• Compartment Capacity property
• Species InitialAmount property
• Parameter Value property

Simulating using a variant does not alter the model original values. The values specified
in the variant are temporarily applied to the model during simulation. You can
permanently replace the values in your model with the values stored in the variant object
by committing it to the model. When you use multiple variants during a simulation, and
there are duplicate specifications for a property value, the last occurrence for the
property value in the array of variants is used during simulation.

Creating Variants Programmatically
There are two ways to create variants or add variants to a model. To create a standalone
variant that is not attached to any model, use sbiovariant. To add a variant to an
existing model, use addvariant. Use the commit function to replace the values in your
model with the variant values permanently.

For illustrated examples of using variants, see the following.

• “Simulate Biological Variability of the Yeast G Protein Cycle Using the Wild-Type and
Mutant Strains” on page 2-47

• “Simulate Model of Glucose-Insulin Response with Different Initial Conditions” on
page 3-22

Creating Variants Graphically
You can interactively create and add variants using the SimBiology desktop. For details,
see “Diagram View” on page 1-25.

2 Modeling

2-40

See Also
addcontent | addvariant | commit | sbiovariant | variant object

More About
• “SimBiology Desktop”

 See Also

2-41

Doses
Doses let you increase the amount of a species in a SimBiology model during simulation,
either at specific time points or regular intervals. For example, you can use a dose object
to model an instantaneous supply of a drug regimen during the simulation of a model. The
increase in the amount of a species occurs only during simulation and does not alter the
species value permanently (that is, the value in the model is not changed).

Representing Doses
There are two types of dose objects.

• ScheduleDose object — Applies a dose to a single species at a predefined list of
time points

• RepeatDose object — Applies a dose to a single species at regular intervals

SimBiology dose objects support the following dosing types.

Dosing
Strate
gy

Description Dose Object Properties
Configuration

Bolus Instantaneous increase in the amount of
drug in the compartment

To create a bolus dose, set the
Amount and TargetName properties
of a dose object. You might also
need to configure other properties
such as RepeatCount, Interval, or
scheduled dose times (Time) if you
are applying a series of doses. For
details on these properties, see
ScheduleDose object and
RepeatDose object .

Infusio
n

Increase of the drug at a fixed rate over a
period of time, which is calculated from
the dose amount

Unlike a bolus dose, you also need
to specify the infusion rate (Rate
property) of the dose object.

2 Modeling

2-42

Dosing
Strate
gy

Description Dose Object Properties
Configuration

Zero-
order

Increase of the drug at a fixed rate
calculated from the dose amount and dose
duration

Unlike a bolus dose, you also need
to create a zero-order duration
parameter and specify the duration
parameter name
(DurationParameterNamepropert
y) of the dose object.

First-
order

Increase of the drug via first-order
absorption kinetics

Unlike bolus, infusion, or zero-
order, you need to create an
additional reaction for the drug
absorption.

Creating Doses Programmatically
There are two common ways to create dose objects using the command-line interface.
One way is to create a dose object using the sbiodose or adddose function. Another is
to create dose objects automatically from data containing dosing information. This first
approach is useful when you want to explore different dosing strategies through
simulation. The second approach is useful if you already have a data set with dosing
information and plan to use this dosing information in your simulation or parameter
estimation.

Create a Dose Object Using sbiodose or adddose

sbiodose creates a standalone dose object that is not attached to any model. You can
apply a standalone dose to different models during simulation by specifying it as a dosing
argument for sbiosimulate, or attach it to any model using adddose. You can also use
it during parameter estimation using sbiofit or sbiofitmixed.

adddose creates a dose object and adds it to a model. You must set its Active property
to true to apply the dose to the model during simulation.

The following examples show how to add a dose object to a one-compartment PK model
using sbiodose and set up the dose properties manually. Alternatively, you can use the
built-in PK models with different dosing types. For details, see “Create Pharmacokinetic
Models” on page 5-22.

 Doses

2-43

Dosing Strategy Example
Bolus “Add a Series of Bolus Doses to a One-Compartment Model”
Infusion “Add an Infusion Dose to a One-Compartment Model”
Zero-order “Increase Drug Concentration in a One-Compartment Model

via Zero-order Dosing”
First-order “Increase Drug Concentration in a One-Compartment Model

via First-order Dosing”

Create Dose Objects from Dosing Data

If you already have dosing data for one or more subjects or patients that you would like to
use in your parameter estimation, first create a groupedData object from your data
set. Use createDoses function to automatically generate an array of dose objects. You
can then use the dose array during parameter estimation using sbiofit or
sbiofitmixed. For a complete workflow, see “Modeling the Population
Pharmacokinetics of Phenobarbital in Neonates”.

Creating Doses Graphically
You can interactively create and add doses using the SimBiology desktop. For details, see
“Diagram View” on page 1-25.

Parameterized and Adaptive Doses
You can specify some of the properties of RepeatDose and ScheduleDose objects by
using model parameters. This parameterization of dose properties gives you more
flexibility in modeling different dosing applications, such as scaling the dose amount by
body weight.

RepeatDose properties that you can parameterize are: Amount, Rate, Interval,
StartTime, RepeatCount, LagParameterName, and DurationParameterName.
ScheduleDose properties that can be parameterized are LagParameterName and
DurationParameterName. You can set these RepeatDose properties, except
LagParameterName and DurationParameterName, to either a numeric value or the
name of a model-scoped parameter (as a character vector or string).

You can make doses adaptive to events, such as increasing the dose amount when the
drug concentration drops below some threshold. This adaptive feature of doses is useful

2 Modeling

2-44

for doses that are not instantaneous. Consider an IV infusion for a drug being added at a
fixed rate over a fixed duration. If an event modifies a dose parameter while this dose is in
progress, you have two options:

• Stop the ongoing dose if any relevant parameter values change by setting the
EventMode property of the dose object to 'stop'.

• Continue the ongoing dose to completion, and updated parameter values affect only
subsequent doses by setting EventMode to 'continue'.

For details, see the EventMode property. For illustrated examples, see “Scale Dose
Amount by Body Weight” and “Change Dose Behavior In Response to Changes in Model
Parameters”.

Units Validation on Parameterized Dose Properties

If you parameterize a dose property and enable dimensional analysis, the unit of the dose
property (dose unit) is validated. The dose unit is valid either if it is empty or if it exactly
matches the unit of the parameter. If the dose unit is invalid, SimBiology issues a warning
in the command line and uses the unit of the parameter instead. To remove the warning,
set the dose unit to empty ('') or to the same unit as the parameter unit.

In the SimBiology desktop, the text (unused) appears next to the corresponding unit
field in the Block Property Editor or Doses tab, meaning that SimBiology is using the
parameter unit instead of the dose unit during simulation. For example, this figure shows
the details of the repeat dose object param_dose in the Block Property Editor. The
TimeUnits option is designated as unused. Instead, SimBiology uses the unit of the
parameter StartTimeParam during simulation. The Amount and Rate properties are not
parameterized, and hence the selected AmountUnits and RateUnits options are used.
To see the units of referenced parameters, click the indicator next to the corresponding
property. The TimeUnits option corresponds to both the StartTime and Interval
properties.

 Doses

2-45

Simulation Solvers for Models Containing Doses
To simulate models containing doses, use a deterministic (ODE or SUNDIALS) solver.
Stochastic solvers do not support doses. For details, see “Choosing a Simulation Solver”
on page 4-8.

See Also
RepeatDose object | ScheduleDose object | adddose | sbiodose

More About
• “SimBiology Desktop”

2 Modeling

2-46

Simulate Biological Variability of the Yeast G Protein
Cycle Using the Wild-Type and Mutant Strains

This example shows how to create and apply a variant to the G protein model of a wild-
type strain. The variant represents a parameter value for the G protein model of a mutant
strain. Thus, when you simulate the model without applying the variant, you see results
for the wild type strain, and when you simulate the model with the variant, you see results
for the mutant strain. This example uses the model described in Model of the Yeast
Heterotrimeric G Protein Cycle on page B-17.

The value of the parameter kGd is 0.11 for the wild-type strain and 0.004 for the mutant
strain. To represent the mutant strain, you will store an alternate value of 0.004 for the
kGd parameter in a variant object, and apply this variant when simulating the model.

For information on variants, see “Variants” on page 2-40.

Load the gprotein.sbproj project, which includes the variable m1, a SimBiology model
object.

sbioloadproject gprotein

You can create a variant of the original model by specifying a different parameter value
for the kGd parameter of the model. First, add a variant to the m1 model object.

v1 = addvariant(m1,'mutant_strain');

Next, add a parameter kGd with a value of 0.004 to the variant object v1.

addcontent(v1,{'parameter','kGd','Value',0.004});

Simulate the wild type model.

[t,x,names] = sbiosimulate(m1);

Simulate the mutant strain model by applying the variant.

[tV,xV,names] = sbiosimulate(m1,v1);

Plot and compare the simulated results.

subplot(1,2,1)
plot(t,x);
legend(names);

 Simulate Biological Variability of the Yeast G Protein Cycle Using the Wild-Type and Mutant Strains

2-47

xlabel('Time');
ylabel('Amount');
title('Wild Type');

subplot(1,2,2)
plot(tV,xV);
legend(names);
xlabel('Time');
ylabel('Amount');
title('Mutant Strain');

2 Modeling

2-48

Create and Simulate a Model with a Custom Function
This example shows how to create a custom function and incorporate it in model
simulation.

Overview
Prerequisites for the Example

This example assumes you have a working knowledge of:

• MATLAB desktop
• Creating and saving MATLAB programs

About the Example Model

This example uses the model described in Model of the Yeast Heterotrimeric G Protein
Cycle on page B-17.

This table shows the reactions used to model the G protein cycle and the corresponding
rate parameters (rate constants) for each reaction. For reversible reactions, the forward
rate parameter is listed first.

No. Name Reaction1 Rate
Parameters

1 Receptor-ligand interaction L + R <-> RL kRL, kRLm
2 Heterotrimeric G protein

formation
Gd + Gbg -> G kG1

3 G protein activation RL + G -> Ga + Gbg + RL kGa
4 Receptor synthesis and

degradation
R <-> null kRdo, kRs

5 Receptor-ligand degradation RL -> null kRD1
6 G protein inactivation Ga -> Gd kGd
1 Legend of species: L = ligand (alpha factor), R = alpha-factor receptor, Gd = inactive
G-alpha-GDP, Gbg = free levels of G-beta:G-gamma complex, G = inactive Gbg:Gd
complex, Ga = active G-alpha-GTP

 Create and Simulate a Model with a Custom Function

2-49

Assumptions of the Example

This example assumes that:

• An inhibitor (Inhib species) slows the inactivation of the active G protein (reaction 6
above, Ga –> Gd).

• The variation in the amount of inhibitor (Inhib species) is defined in a custom
function, inhibvalex.

• The inhibitor (Inhib species) affects the reaction by changing the amount of rate
parameter kGd.

About the Example

This example shows how to create and call a custom function in a SimBiology expression.
Specifically, it shows how to use a custom function in a rule expression.

About Using Custom Functions in SimBiology Expressions

You can use custom functions in:

• Reaction rate expressions (ReactionRate property)
• Rule expressions (Rule property)
• Event expressions (EventFcns property or Trigger property)

The requirements for using custom functions in SimBiology expressions are:

• Create a custom function. For more information, see function.
• Change the current folder to the folder containing your custom MATLAB file. Do this

by using the cd command or by using the Current Folder field in the MATLAB desktop
toolbar. Alternatively, add the folder containing your file to the search path. Do this by
using the addpath command or see “Change Folders on the Search Path” (MATLAB).

• Call the custom function in a SimBiology reaction, rule, or event expression.

Tip If your rule or reaction rate expression is not continuous and differentiable, see
“Using Events to Address Discontinuities in Rule and Reaction Rate Expressions” on page
2-38 before simulating your model.

2 Modeling

2-50

Create a Custom Function
The following procedure creates a custom function, inhibvalex, which lets you specify
how the inhibitor amount changes over time. The inputs are time, the initial amount of
inhibitor, and a parameter that governs the amount of inhibitor. The output of the function
is the amount of inhibitor.

1 In the MATLAB desktop, select File > New > Script, to open the MATLAB Editor.
2 Copy and paste the following function declaration:

% inhibvalex.m
function Cp = inhibvalex(t, Cpo, kel)

% This function takes the input arguments t, Cpo, and kel
% and returns the value of the inhibitor Cp.
% You can later specify the input arguments in a
% SimBiology rule expression.
% For example in the rule expression, specify:
% t as time (a keyword recognized as simulation time),
% Cpo as a parameter that represents the initial amount of inhibitor,
% and kel as a parameter that governs the amount of inhibitor.

if t < 400
 Cp = Cpo*exp(-kel*(t));
else
 Cp = Cpo*exp(-kel*(t-400));
end

3 Save the file (name the file inhibvalex.m) in a directory that is on the MATLAB
search path, or to a directory that you can access.

4 If the location of the file is not on the MATLAB search path, change the working
directory to the file location.

Load the Example Model
Load the gprotein example project, which includes the variable m1, a model object:

sbioloadproject gprotein

The m1 model object appears in the MATLAB Workspace.

 Create and Simulate a Model with a Custom Function

2-51

Add the Custom Function to the Example Model
The following procedure creates a rule expression that calls the custom function,
inhibvalex, and specifies the three input values to this function.

1 Add a repeated assignment rule to the model that specifies the three input values to
the custom function, inhibvalex:

rule1 = addrule(m1, 'Inhib = inhibvalex(time, Cpo, Kel)',...
 'repeatedAssignment');

The time input is a SimBiology keyword recognized as simulation time
2 Create the two parameters used by the rule1 rule and assign values to them:

p1 = addparameter(m1, 'Cpo', 250);
p2 = addparameter(m1, 'Kel', 0.01);

3 Create the species used by the rule1 rule:

s1 = addspecies(m1.Compartments, 'Inhib');

Define a Rule to Change Parameter Value
The value of rate parameter kGd is affected by the amount of inhibitor present in the
system. Add a rule to the model to describe this action, but first change the
ConstantValue property of the parameter kGd so that it can be varied by a rule.

1 Change the ConstantValue property of the kGd parameter to false.

p3 = sbioselect(m1, 'Type', 'parameter', 'Name', 'kGd');
p3.ConstantValue = false;

2 Add a repeated assignment rule to the model to define how the kGd parameter is
affected by the Inhib species.

rule2 = addrule(m1, 'kGd = 1/Inhib', 'repeatedAssignment');

Add an Event to Reset the Solver at a Discontinuity
The custom function, inhibvalex, introduces a discontinuity in the model when time =
400. To ensure accurate simulation results, add an event to the model to reset the solver
at the time of the discontinuity. Set the event to trigger at the time of the discontinuity

2 Modeling

2-52

(time = 400). The event does not need to modify the model, so create an event function
that multiplies a species value by 1.

addevent(m1, 'time>=400', 'G=1*G');

Simulate the Modified Model
1 Configure the simulation settings (configset object) for the m1 model object to

log all states during the simulation.

cs = getconfigset(m1);
cs.RuntimeOptions.StatesToLog = 'all';

2 Simulate the model.

simDataObj = sbiosimulate(m1);
3 Plot the results.

sbioplot(simDataObj);

 Create and Simulate a Model with a Custom Function

2-53

The plot does not show the species of interest due to the wide range in species
amounts/concentrations.

4 Plot only the species of interest. Ga.

GaSimDataObj = selectbyname(simDataObj,'Ga');
sbioplot(GaSimDataObj);

2 Modeling

2-54

Notice the change in the profile of species Ga at time = 400 seconds (simulation
time). This is the time when the inhibitor amount is changed to reflect the re-addition
of inhibitor to the model.

5 Plot only the inhibitor (Inhib species).

InhibSimDataObj = selectbyname(simDataObj,'Inhib');
sbioplot(InhibSimDataObj)

 Create and Simulate a Model with a Custom Function

2-55

See Also
addpath | cd | function

More About
• “Change Folders on the Search Path” (MATLAB)

2 Modeling

2-56

View Model Equations
You can view the system of equations that SimBiology creates when you build a model
using reactions, rules, events, variants, and doses. Viewing model equations is useful for:

• Publishing purposes
• Model debugging

For details, see the getequations method of a Model object or the “Equations View” on
page 1-49 from the SimBiology desktop.

 View Model Equations

2-57

Component Usage
SimBiology lets you find species, parameters, and compartments that are not used in a
model. You can also query how a particular quantity is used by other expressions such as
a parameter being used as a reaction rate constant or species being used in an event.

From the command line, use the findUnusedComponents function to look for unused
model components and the findUsages function to see how a component is used in
expressions. From the SimBiology desktop on page 1-25, select Remove Unused on the
Model tab to delete unused quantities. To look for usages of a quantity, select Show
Usages.

Species Usage
A species is used when it is referenced in any of the following properties of other
components:

• The Reaction or ReactionRate property of a reaction object,
• The ParameterVariableNames or SpeciesVariableNames property of a KineticLaw

object,
• The Rule property of a rule object,
• The Trigger or EventFcns property of an event object, and
• The TargetName property of a ScheduleDose object or RepeatDose object.

Parameter Usage
A parameter is used when it is referenced in any of the following properties of other
components:

• The ReactionRate property of a reaction object,
• The ParameterVariableNames property of a KineticLaw object,
• The Rule property of a rule object,
• The Trigger or EventFcns property of an event object,
• The Content property of a variant object, and
• The DurationParameterName or LagParameterName property of a ScheduleDose

object or RepeatDose object.

2 Modeling

2-58

• The Amount, Rate, Interval, StartTime, or RepeatCount property of a RepeatDose
object.

Compartment Usage
A compartment is used when it is referenced in any of the following properties of other
components:

• The Parent property of a species object,
• The Owner property of a compartment object,
• The ReactionRate property of a reaction object,
• The ParameterVariableNames property of a KineticLaw object,
• The Rule property of a rule object,
• The Trigger or EventFcns property of an event object, and
• The Content property of a variant object.

Unit and UnitPrefix Usage
A unit or unit prefix is used when it is referenced in any of the following properties of
other components:

• The Composition property of all units in the BuiltInLibrary and
UserDefinedLibrary,

• The InitialAmountUnits property of all species in the specified models,
• The CapacityUnits property of all compartments in the specified models,
• The ValueUnits property of all parameters in the specified models,
• The TimeUnits property of all specified doses,
• The AmountUnits property of all specified doses, and
• The RateUnits property of all specified doses.

Abstract Kinetic Law Usage
An abstract kinetic law object aklObj can only be used by a reaction object robj. It is
used when:

 Component Usage

2-59

• The KineticLaw property of the reaction object is not empty, and
• robj.KineticLaw.KineticLawName matches the name of the abstract kinetic law

aklObj.Name.

See Also
findUnusedComponents | findUsages(AbstractKineticLaw) |
findUsages(species,parameter,compartment) |
findUsages(unit,unitprefix)

More About
• “What is a Model?” on page 2-2
• “SimBiology Desktop”
• “Model Views” on page 1-25
• “Evaluation of Model Component Names in Expressions” on page 2-61

2 Modeling

2-60

Evaluation of Model Component Names in Expressions
SimBiology model components on page 2-2 include quantities and expressions. You can
refer to model quantities (compartments, species, and parameters) by their names in an
expression, such as a reaction or an assignment equation. Follow these guidelines when
you name model components or referencing their names in expressions. When evaluating
a name that matches different quantities, SimBiology resolves it by following precedence
rules.

Guidelines for Naming Model Components
• Model and parameter names cannot contain brackets [] and cannot be empty, the

word time, or all whitespace.
• Compartment and species names cannot contain the characters ->, <->, [or] and

cannot be empty, the word null, or the word time. However, a name can contain the
words null and time within the name, such as nullDrug.

• Reaction, event, and rule names cannot contain brackets [] and cannot be the word
time.

Guidelines for Referencing Names in Expressions
• If the quantity name is not a valid MATLAB variable name, you must enclose the name

in brackets when referring to it in an expression. For example, if the name of a species
is DNA polymerase+, write [DNA polymerase+].

• If you have multiple species with the same name in different compartments, you must
qualify the name by referring to the name of the compartment that contains the
species. For example, the qualified name nucleus.[DNA polymerase+] refers to
the DNA polymerase+ species that resides in the nucleus compartment.

Precedence Rules for Evaluating Quantity Names
If a name referenced in an expression matches multiple quantities, SimBiology evaluates
the expression using precedence rules. The rules depend on whether the name is
referenced in a reaction or other expressions that are not reactions.

 Evaluation of Model Component Names in Expressions

2-61

For Reactions

When a reaction refers to a name that matches different quantities, SimBiology evaluates
the name as the first quantity with a matching name in this order: species, parameter
scoped to the reaction, compartment, or parameter scoped to the model.

For Other Expressions

There are different types of expressions that are not reactions, namely rules and events.
Rules include initial and repeated assignment equations, algebraic equations, and
differential rate equations. An event contains expressions that represent an event trigger
and one or more event functions to model discrete transitions in the values of quantities
or expressions in the model.

When a nonreaction expression refers to a name that matches different quantities,
SimBiology evaluates the name as the first quantity with a matching name in this order:
species, compartment, or parameter scoped to the model.

See Also
Name

More About
• “What is a Model?” on page 2-2
• “Definitions and Evaluations of Reactions” on page 2-10
• “Definitions and Evaluations of Rules” on page 2-17
• “Events” on page 2-30
• “Component Usage” on page 2-58

2 Modeling

2-62

Structural Analysis

• “Model Verification” on page 3-2
• “Conserved Moiety Determination” on page 3-4
• “Determining Conserved Moieties” on page 3-7
• “Determining the Adjacency Matrix for a Model” on page 3-10
• “Determining the Stoichiometry Matrix for a Model” on page 3-12
• “Selecting Absolute Tolerance and Relative Tolerance for Simulation” on page 3-15
• “Troubleshooting Simulation Problems” on page 3-18
• “Simulate Model of Glucose-Insulin Response with Different Initial Conditions”

on page 3-22

3

Model Verification
In this section...
“What is Model Verification?” on page 3-2
“When to Verify a Model” on page 3-2
“Verifying That a Model Has No Warnings or Errors” on page 3-3
“Model Verification Example” on page 3-3

What is Model Verification?
SimBiology has functionality that helps you find and fix warnings that you might need to
be aware of, and errors that would prevent you from simulating and analyzing your
model.

Model verification checks many aspects of the model including:

• Model structure
• Validity of mathematical expressions
• Dimensional analysis
• Unit conversion issues

When to Verify a Model
You can check your model for warnings and errors at any time when constructing or
working with your model. For example:

• Verify your model during construction to ensure that the model is complete.
• Verify the model after changing simulation settings, dimensional analysis settings, or

unit conversion settings.

Analyses such as simulation, scanning, and parameter fitting automatically verify a model.

Tip Repeatedly running a task using a different variant or setting a different value for the
InitialAmount property of a species, the Capacity property of a compartment, or the
Value property of a parameter, generates warnings only the first time you simulate a

3 Structural Analysis

3-2

model. Use the verification functionality described in this section to display warnings
again.

Verifying That a Model Has No Warnings or Errors
Use the verify method to see a list of warnings and errors in your model.

Use the sbiolastwarning and sbiolasterror functions to return the last warning
and last error encountered during verification.

Model Verification Example
1 Create a model with a reaction that references K1, an undefined parameter:

% Create a model named example
model = sbiomodel('example');
% Add a compartment named cell to model
compartment = addcompartment(model, 'cell');
% Add two species, A and B, to the cell compartment
species_1 = addspecies(compartment, 'A');
species_2 = addspecies(compartment, 'B');
% Add the reaction A -> B to the model
reaction = addreaction(model, 'A -> B', 'ReactionRate', 'K1');

2 Verify the model to check for warnings and errors:

verify(model)

??? --> Error reported from Expression Validation:
The name 'K1' in reaction 'A -> B' does not refer to any in-scope species,
parameters, or compartments.

3 Address the error by defining the parameter K1:

% Add a parameter, K1, to the model with a value of 3
parameter = addparameter(model, 'K1', 3);

4 Verify the model again:

verify(model)

 Model Verification

3-3

Conserved Moiety Determination
In this section...
“Introduction to Moiety Conservation” on page 3-4
“Algorithms for Conserved Cycle Calculations” on page 3-4
“More About” on page 3-6

Introduction to Moiety Conservation
Conserved moieties represent quantities that are conserved in a system, regardless of the
individual reaction rates.

Consider this simple network:

reaction 1: A -> B
reaction 2: B -> C
reaction 3: C -> A

Regardless of the rates of reactions 1, 2, and 3, the quantity A + B + C is conserved
throughout the dynamic evolution of the system. This conservation is termed structural
because it depends only on the structure of the network, rather than on details such as
the kinetics of the reactions involved. In the context of systems biology, such a conserved
quantity is sometimes referred to as a conserved moiety. A typical, real-world example of
a conserved moiety is adenine in its various forms ATP, ADP, AMP, etc. Finding and
analyzing conserved moieties can yield insights into the structure and function of a
biological network. In addition, for the quantitative modeler, conserved moieties
represent dependencies that can be removed to reduce a system’s dimensionality, or
number of dynamic variables. In the previous simple network, in principle, it is only
necessary to calculate the time courses for A and B. After this is done, C is fixed by the
conservation relation.

Algorithms for Conserved Cycle Calculations
The sbioconsmoiety function analyzes conservation relationships in a model by
calculating a complete set of linear conservation relations for the species in the model
object.

sbioconsmoiety lets you specify one of three algorithms based on the nature of the
model and the required results:

3 Structural Analysis

3-4

• 'qr' — sbioconsmoiety uses an algorithm based on QR factorization. From a
numerical standpoint, this is the most efficient and reliable approach.

• 'rreduce' — sbioconsmoiety uses an algorithm based on row reduction, which
yields better numbers for smaller models. This is the default.

• 'semipos' — sbioconsmoiety returns conservation relations in which all the
coefficients are greater than or equal to zero, permitting a more transparent
interpretation in terms of physical quantities.

For larger models, the QR-based method is recommended. For smaller models, row
reduction or the semipositive algorithm may be preferable. For row reduction and QR
factorization, the number of conservation relations returned equals the row rank
degeneracy of the model object's stoichiometry matrix. The semipositive algorithm can
return a different number of relations. Mathematically speaking, this algorithm returns a
generating set of vectors for the space of semipositive conservation relations.

In some situations, you may be interested in the dimensional reduction of your model via
conservation relations. Recall the simple model, presented in “Introduction to Moiety
Conservation” on page 3-4, that contained the conserved cycle A + B + C. Given A and
B, C is determined by the conservation relation; the system can be thought of as having
only two dynamic variables rather than three. The 'link' algorithm specification caters
to this situation. In this case, sbioconsmoiety partitions the species in the model into
independent and dependent sets and calculates the dependence of the dependent species
on the independent species.

Consider a general system with an n-by-m stoichiometry matrix N of rank k, and suppose
that the rows of N are permuted (which is equivalent to permuting the species ordering)
so that the first k rows are linearly independent. The last n – k rows are then necessarily
dependent on the first k rows.

The matrix N can be split into the following independent and dependent parts,

N =
NR
ND

where R in the independent submatrix NR denotes 'reduced'; the (n – k)-by-k link matrix
L0 is defined so that ND = L0*NR. In other words, the link matrix gives the dependent
rows ND of the stoichiometry matrix, in terms of the independent rows NR. Because each
row in the stoichiometry matrix corresponds to a species in the model, each row of the
link matrix encodes how one dependent species is determined by the k independent
species.

 Conserved Moiety Determination

3-5

More About
For examples of determining conserved moieties, see:

• “Determining Conserved Moieties” on page 3-7
• “Finding Conserved Quantities in a Pathway Model”

3 Structural Analysis

3-6

Determining Conserved Moieties
1 Load the Goldbeter Mitotic Oscillator project, which includes the variable m1, a

model object:

sbioloadproject Goldbeter_Mitotic_Oscillator_with_reactions

The m1 model object appears in the MATLAB Workspace.
2 Display the species information:

m1.Compartments.Species

SimBiology Species Array

Index: Compartment: Name: InitialAmount: InitialAmountUnits:
 1 unnamed C 0.01
 2 unnamed M 0.01
 3 unnamed Mplus 0.99
 4 unnamed Mt 1
 5 unnamed X 0.01
 6 unnamed Xplus 0.99
 7 unnamed Xt 1
 8 unnamed V1 0
 9 unnamed V3 0
 10 unnamed AA 0

3 Display the reaction information:

m1.Reactions

SimBiology Reaction Array

 Index: Reaction:
 1 AA -> C
 2 C -> AA
 3 C + X -> AA + X
 4 Mplus + C -> M + C
 5 M -> Mplus
 6 Xplus + M -> X + M
 7 X -> Xplus

4 Use the simplest form of the sbioconsmoiety function and display the results. The
default call to sbioconsmoiety, in which no algorithm is specified, uses an
algorithm based on row reduction.

[g sp] = sbioconsmoiety(m1)

 Determining Conserved Moieties

3-7

g =

 0 1 1 0 0 0
 0 0 0 1 1 0
 0 0 0 0 0 1

sp =

 'C'
 'M'
 'Mplus'
 'X'
 'Xplus'
 'AA'

The columns in g are labeled by the species sp. Thus the first row describes the
conserved relationship, M + Mplus. Notice that the third row indicates that the
species AA is conserved, which is because AA is constant (ConstantAmount = 1).

5 Call sbioconsmoiety again, this time specifying the semipositive algorithm to
explore conservation relations in the model. Also specify to return the conserved
moieties in a cell array of character vectors, instead of a matrix.

cons_rel = sbioconsmoiety(m1,'semipos','p')

cons_rel =

 'AA'
 'X + Xplus'
 'M + Mplus'

6 Use the 'link' option to study the dependent and independent species.

[SI,SD,L0,NR,ND] = sbioconsmoiety(m1, 'link');
7 Show the list of independent species:

SI

SI =

 'C'
 'M'
 'X'

8 Show the list of dependent species:

3 Structural Analysis

3-8

SD

SD =

 'Mplus'
 'Xplus'
 'AA'

9 Show the link matrix relating SD and SI by converting the L0 output from a sparse
matrix to a full matrix:

L0_full = full(L0)

L0_full =

 0 -1.0000 0
 0 0 -1.0000
 0 0 0

10 Show the independent stoichiometry matrix, NR by converting the NR output from a
sparse matrix to a full matrix:

NR_full = full(NR)

NR_full =

 1 -1 -1 0 0 0 0
 0 0 0 1 -1 0 0
 0 0 0 0 0 1 -1

11 Show the dependent stoichiometry matrix, ND by converting the ND output from a
sparse matrix to a full matrix:

ND_full = full(ND)

ND_full =

 0 0 0 -1 1 0 0
 0 0 0 0 0 -1 1
 0 0 0 0 0 0 0

 Determining Conserved Moieties

3-9

Determining the Adjacency Matrix for a Model
In this section...
“What Is an Adjacency Matrix?” on page 3-10
“Retrieving an Adjacency Matrix for a Model” on page 3-10

What Is an Adjacency Matrix?
An adjacency matrix lets you easily determine:

• The reactants and products in a specific reaction in a model
• The reactions that a specific species is part of, and whether the species is a reactant or

product in that reaction

An adjacency matrix is an N-by-N matrix, where N equals the total number of species and
reactions in a model. Each row corresponds to a species or reaction, and each column
corresponds to a species or reaction.

The matrix indicates which species and reactions are involved as reactants and products:

• Reactants are represented in the matrix with a 1 at the appropriate location (row of
species, column of reaction). Reactants appear above the diagonal.

• Products are represented in the matrix with a 1 at the appropriate location (row of
reaction, column of species). Products appear below the diagonal.

• All other locations in the matrix contain a 0.

For example, if a model object contains one reaction equal to A + B -> C and the
Name property of the reaction is R1, the adjacency matrix is:

 A B C R1
 A 0 0 0 1
 B 0 0 0 1
 C 0 0 0 0
 R1 0 0 1 0

Retrieving an Adjacency Matrix for a Model
Retrieve an adjacency matrix for a model by passing the model object as an input
argument to the getadjacencymatrix method.

3 Structural Analysis

3-10

1 Read in m1, a model object, using sbmlimport:

m1 = sbmlimport('lotka.xml');

2 Get the adjacency matrix for m1:

[M, Headings] = getadjacencymatrix(m1)

M =

 (5,1) 1
 (5,2) 1
 (6,3) 1
 (7,4) 1
 (1,5) 1
 (2,5) 1
 (2,6) 1
 (3,6) 1
 (3,7) 1

Headings =

 'x'
 'y1'
 'y2'
 'z'
 'Reaction1'
 'Reaction2'
 'Reaction3'

3 Convert the adjacency matrix from a sparse matrix to a full matrix to more easily
see the relationships between species and reactions:

M_full = full(M)

M_full =

 0 0 0 0 1 0 0
 0 0 0 0 1 1 0
 0 0 0 0 0 1 1
 0 0 0 0 0 0 0
 1 1 0 0 0 0 0
 0 0 1 0 0 0 0
 0 0 0 1 0 0 0

 Determining the Adjacency Matrix for a Model

3-11

Determining the Stoichiometry Matrix for a Model
In this section...
“What Is a Stoichiometry Matrix?” on page 3-12
“Retrieving a Stoichiometry Matrix for a Model” on page 3-13

What Is a Stoichiometry Matrix?
A stoichiometry matrix lets you easily determine:

• The reactants and products in a specific reaction in a model, including the
stoichiometric value of the reactants and products

• The reactions that a specific species is part of, and whether the species is a reactant or
product in that reaction

A stoichiometry matrix is an M-by-R matrix, where M equals the total number of species
in a model, and R equals the total number of reactions in a model. Each row corresponds
to a species, and each column corresponds to a reaction.

The matrix indicates which species and reactions are involved as reactants and products:

• Reactants are represented in the matrix with their stoichiometric value at the
appropriate location (row of species, column of reaction). Reactants appear as
negative values.

• Products are represented in the matrix with their stoichiometric value at the
appropriate location (row of species, column of reaction). Products appear as positive
values.

• All other locations in the matrix contain a 0.

For example, consider a model object containing two reactions. One reaction (named
R1) is equal to 2 A + B -> 3 C, and the other reaction (named R2) is equal to B + 3 D
-> 4 A. The stoichiometry matrix is:

 R1 R2
A -2 4
B -1 -1
C 3 0
D 0 -3

3 Structural Analysis

3-12

Retrieving a Stoichiometry Matrix for a Model
Retrieve a stoichiometry matrix for a model by passing the model object as an input
argument to the getstoichmatrix method.

1 Read in m1, a model object, using sbmlimport:

m1 = sbmlimport('lotka.xml');
2 Get the stoichiometry matrix for m1:

[M,objSpecies,objReactions] = getstoichmatrix(m1)

M =

 (2,1) 1
 (2,2) -1
 (3,2) 1
 (3,3) -1
 (4,3) 1

objSpecies =

 'x'
 'y1'
 'y2'
 'z'

objReactions =

 'Reaction1'
 'Reaction2'
 'Reaction3'

3 Convert the stoichiometry matrix from a sparse matrix to a full matrix to more
easily see the relationships between species and reactions:

M_full = full(M)

M_full =

 0 0 0
 1 -1 0

 Determining the Stoichiometry Matrix for a Model

3-13

 0 1 -1
 0 0 1

3 Structural Analysis

3-14

Selecting Absolute Tolerance and Relative Tolerance for
Simulation

In this section...
“Algorithm” on page 3-15
“Absolute Tolerance Scaling” on page 3-16

SimBiology uses AbsoluteTolerance and RelativeTolerance to control the accuracy of
integration during simulation. Specifically, AbsoluteTolerance is used to control the
largest allowable absolute error at any step during simulation. It controls the error when
a solution is small. Intuitively, when the solution approaches 0, AbsoluteTolerance is
the threshold below which you do not worry about the accuracy of the solution since it is
effectively 0. RelativeTolerance controls the relative error of a single step of the
integrator. Intuitively, it controls the number of significant digits in a solution, except
when it is smaller than the absolute tolerance, and −log10 RelativeTolerance is the
number of correct digits.

Algorithm
At each simulation step i, the solver estimates the local error e in the state j of the
simulation. The solver reduces the size of time step i until the error of the state satisfies:

e i, j ≤ max RelativeTolerance ∗ y i, j , AbsoluteTolerance i, j

Thus at state values of larger magnitude, the accuracy is determined by
RelativeTolerance. As the state values approach zero, the accuracy is controlled by
AbsoluteTolerance.

The correct choice of values for RelativeTolerance and AbsoluteTolerance varies
depending on the problem. The default values may work for first trials of the simulation.
As you adjust the tolerances, consider that there are trade-offs between speed and
accuracy:

• If the simulation takes too long, you can increase (or loosen) the values of
RelativeTolerance and AbsoluteTolerance at the cost of some accuracy.

• If the results seem inaccurate, you can decrease (or tighten) the relative tolerance
values by dividing with 10N, where N is a real positive number. But this tends to slow
down the solver.

 Selecting Absolute Tolerance and Relative Tolerance for Simulation

3-15

• If the magnitude of the state values is high, you can decrease the relative tolerance to
get more accurate results.

Absolute Tolerance Scaling
How SimBiology uses AbsoluteTolerance to determine the error depends on whether
the AbsoluteToleranceScaling property is enabled. By default,
AbsoluteToleranceScaling is enabled which means each state has its own absolute
tolerance that may increase over the course of simulation:

AbsoluteTolerance i, j = CSAbsTol * Scale i, j

CSAbsTol is the AbsoluteTolerance property defined in SolverOptions of the active
configuration set object.

For a state that has a nonzero initial value, the scale is the maximum magnitude over the
state, as seen over the simulation thus far:

Scale i, j = max y(1: i, j)

For a state that has an initial value of zero, the scale is estimated as the state value after
taking a trial step of size AbsoluteToleranceStepSize using the Euler method. Let us call
this value ye(j). Then:

Scale i, j = max ye(j); y(2: i, j)

If an initial state is zero and has no dynamic at time = 0, then:

AbsoluteTolerance i, j = CSAbsTol

Doses, events, and initial assignment rules at simulation time = 0 are not considered
when calculating absolute tolerance scaling.

See Also

More About
• “Model Simulation” on page 4-3
• “Choosing a Simulation Solver” on page 4-8

3 Structural Analysis

3-16

• “Ordinary Differential Equations” (MATLAB)

 See Also

3-17

Troubleshooting Simulation Problems
SimBiology uses ODE solvers for model simulation on page 4-3. Solver errors can cause
simulation problems. Many solver errors relate to the stiffness of the model and the
relative and absolute tolerances. As a result, the simulation can take long. You might also
see one of the following error messages, indicating that the solver is not able to solve the
problem within the tolerances.

• Integration tolerance not met
• CVODES returned -4 from module CVODES function CVode: At t = ... and h = ...

the corrector convergence test failed repeatedly or with |h| = hmin.

You might also see one or more of the following warning messages, which are precursors
to potential solver tolerance issues.

• The right-hand side of the system of SimBiology ODEs results in complex numbers.
The imaginary part of the result will be ignored.

• The right-hand side of the system of SimBiology ODEs results in infinite or NaN
values. This usually indicates a modeling error and can lead to solver integration
errors.

• The repeated assignment rules of the SimBiology model result in complex numbers.
The imaginary part of the result will be ignored.

Tips for Solving Simulation Problems
To fix the simulation problems that solver errors can cause, try the following
troubleshooting tips.

Improve Performance by Acceleration

You can accelerate the simulation by converting the model to compiled C code, which
executes faster. For details, see “Accelerating Model Simulations and Analyses” on page
4-116. If the simulation is still slow after acceleration, there might be solver tolerance
issues. Try the remaining tips without accelerating the model.

Debug the Model Using MaximumNumberOfLogs and MaximumWallClock

MaximumNumberOfLogs and MaximumWallClock are some of the configuration options
you can use to stop the simulation just before the error happens. Then you can check for
unusual simulated values, such as negative species amounts.

3 Structural Analysis

3-18

For instance, set MaximumNumberOfLogs to 1 to get the values of the model immediately
after applying initial and repeated assignment rules. If you set the value to 2, and the
simulation fails with the integration error, then it probably indicates an error with the
assignment rules.

While varying MaximumNumberOfLogs, simulate the model repeatedly using the same
conditions that produce the error. The model might simulate without error until you reach
a certain value of MaximumNumberOfLogs. Then check the simulated values at the final
simulation time. If you see negative values for certain states, such as negative species
amounts, examine the expressions in your model that can affect those states. Update the
expressions to account for possible issues, such as negative values or division-by-0, by
either rearranging the equations and/or inserting some protections, such as max(0,x) or
max(eps,x), where x is the variable that is responsible for the error.

Alternatively, you can look at the equations view of the model to check the initial
conditions, such as species amounts and parameter values at simulation time = 0, and
mathematical expressions of the model. For details, see getequations or “Equations View”
on page 1-49.

Check the ODE Solver

If your model is stiff, and you have selected an inappropriate solver, the step size taken by
the solver might be forced down to an unreasonably small level compared to the interval
of integration. Make sure that you have selected either ode15s or sundials as your
solver for stiff ODEs.

Disable AbsoluteToleranceScaling

Turn off AbsoluteToleranceScaling.

SimBiology uses AbsoluteTolerance and RelativeTolerance to control the accuracy of
integration during simulation. Specifically, AbsoluteTolerance controls the largest
allowable absolute error at any step during simulation.

When AbsoluteToleranceScaling is enabled (by default), each state has its own
absolute tolerance that can increase over the course of simulation. Sometimes the
automatic scaling is inadequate for models that have kinetics at largely different scales.
For example, the reaction rate of a reaction can be in the order of 1022, while another is
0.1. By turning off AbsoluteToleranceScaling, you might be able to simulate the
model.

 Troubleshooting Simulation Problems

3-19

Loosen Tolerances

If the simulation tolerance error still exists after disabling AbsoluteToleranceScaling, try
loosening the relative and absolute tolerances.

Set RelativeTolerance to 10−m + 1, where m is the number of significant digits desired
in the solution X. If X has multiple scales, start with using the smaller X and increase from
there if the tolerance is not met.

Set AbsoluteTolerance to a value of X that is negligibly small for your problem.
Similarly, start from the smaller X and increase from there.

For details, see “Selecting Absolute Tolerance and Relative Tolerance for Simulation” on
page 3-15.

Set MassUnits and AmountUnits

The MassUnits and AmountUnits properties define the appropriate mass or amount unit
that SimBiology uses internally during model simulation when UnitConversion is on. It is
recommended that you use the default unit (<automatic>) but in some edge cases, you
may need to change it.

Change MassUnits or AmountUnits to a unit so that the simulated values are not too
large (that is, greater than 106) or too small (that is, smaller than 10-6).

Suppose that you have a model with a state that takes on values around 10-12 moles for
the entire simulation. It might be appropriate to set AmountUnits to picomole. In this
case, the internal simulation values would be around 1, instead of around 10-12 as in the
default case.

How to Change Solver Options and Simulation Options
Solver and simulation options are stored in the configuration set object (configset
object) of the model. Solver options contain settings such as relative and absolute
tolerances. Simulation options are settings such as MaximumNumberOfLogs and
MaximumWallClock. Depending on whether you are using the command line or
graphical interface, the way to access and change the options differs.

Using the Command line

To access and change the SolverOptions, use the following commands, where m1 is a
SimBiology model.

3 Structural Analysis

3-20

configset = getconfigset(m1);
solverOpts = configset.SolverOptions;
solverOpts.AbsoluteTolerance = 1e-5;
solverOpts.RelativeTolerance = 1e-5;
solverOpts.AbsoluteToleranceScaling = false;

Access simulation options directly from the configset object.

configset = getconfigset(m1);
configset.MaximumNumberOfLogs = 1;
configset.MaximumWallClock = 10;

Using the Graphical Interface

If you are using the SimBiology desktop, you can access the options by selecting
Simulation Settings from the Editor tab of the task editor on page 1-65. For details, see
“Configuring Simulation-Related Settings” on page 1-73.

See Also
getequations | AbsoluteTolerance | Configset object | MaximumNumberOfLogs |
MaximumWallClock | RelativeTolerance | SolverOptions

More About
• “Model Simulation” on page 4-3
• “Selecting Absolute Tolerance and Relative Tolerance for Simulation” on page 3-15
• “Configuring Tasks” on page 1-72
• “Equations View” on page 1-49

 See Also

3-21

Simulate Model of Glucose-Insulin Response with
Different Initial Conditions

This example shows how to simulate the glucose-insulin responses for the normal and
diabetic subjects.

Load the model of glucose-insulin response. For details about the model, see the
Background section in “Simulating the Glucose-Insulin Response”.

sbioloadproject('insulindemo', 'm1')

The model contains different initial conditions stored in various variants.

variants = getvariant(m1);

Get the initial conditions for the type 2 diabetic patient.

type2 = variants(1)

 SimBiology Variant - Type 2 diabetic (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Plasma Volume ... Value 1.49
 2 parameter k1 Value 0.042
 3 parameter k2 Value 0.071
 4 parameter Plasma Volume ... Value 0.04
 5 parameter m1 Value 0.379
 6 parameter m2 Value 0.673
 7 parameter m4 Value 0.269
 8 parameter m5 Value 0.0526
 9 parameter m6 Value 0.8118
 10 parameter Hepatic Extrac... Value 0.6
 11 parameter kmax Value 0.0465
 12 parameter kmin Value 0.0076
 13 parameter kabs Value 0.023
 14 parameter kgri Value 0.0465
 15 parameter f Value 0.9
 16 parameter a Value 6e-05
 17 parameter b Value 0.68
 18 parameter c Value 0.00023
 19 parameter d Value 0.09
 20 parameter Stomach Glu Af... Value 125
 21 parameter kp1 Value 3.09

3 Structural Analysis

3-22

 22 parameter kp2 Value 0.0007
 23 parameter kp3 Value 0.005
 24 parameter kp4 Value 0.0786
 25 parameter ki Value 0.0066
 26 parameter [Ins Ind Glu U... Value 1
 27 parameter Vm0 Value 4.65
 28 parameter Vmx Value 0.034
 29 parameter Km Value 466.21
 30 parameter p2U Value 0.084
 31 parameter K Value 0.99
 32 parameter alpha Value 0.013
 33 parameter beta Value 0.05
 34 parameter gamma Value 0.5
 35 parameter ke1 Value 0.0007
 36 parameter ke2 Value 269
 37 parameter Basal Plasma G... Value 164.18
 38 parameter Basal Plasma I... Value 54.81

Suppress an informational warning that is issued during simulations.

warnSettings = warning('off','SimBiology:DimAnalysisNotDone_MatlabFcn_Dimensionless');

Create SimFunction objects to simulate the glucose-insulin response for the normal and
diabetic subjects.

• Specify an empty array {} for the second input argument to denote that the model will
be simulated using the base parameter values (that is, no parameter scanning will be
performed).

• Specify the plasma glucose and insulin concentrations as responses (outputs of the
function to be plotted).

• Specify the species Dose as the dosed species. This species represents the initial
concentration of glucose at the start of the simulation.

normSim = createSimFunction(m1,{},...
 {'[Plasma Glu Conc]','[Plasma Ins Conc]'},'Dose')

normSim =
SimFunction

Parameters:

Observables:

 Name Type Units

 Simulate Model of Glucose-Insulin Response with Different Initial Conditions

3-23

 ___________________ _________ _____________________

 '[Plasma Glu Conc]' 'species' 'milligram/deciliter'
 '[Plasma Ins Conc]' 'species' 'picomole/liter'

Dosed:

 TargetName TargetDimension
 __________ ___________________

 'Dose' 'Mass (e.g., gram)'

For the diabetic patient, specify the initial conditions using the variant type2.

diabSim = createSimFunction(m1,{},...
 {'[Plasma Glu Conc]','[Plasma Ins Conc]'},'Dose',type2)

diabSim =
SimFunction

Parameters:

Observables:

 Name Type Units
 ___________________ _________ _____________________

 '[Plasma Glu Conc]' 'species' 'milligram/deciliter'
 '[Plasma Ins Conc]' 'species' 'picomole/liter'

Dosed:

 TargetName TargetDimension
 __________ ___________________

 'Dose' 'Mass (e.g., gram)'

Select a dose that represents a single meal of 78 grams of glucose at the start of the
simulation.

singleMeal = sbioselect(m1,'Name','Single Meal');

Convert the dosing information to the table format.

3 Structural Analysis

3-24

mealTable = getTable(singleMeal);

Simulate the glucose-insulin response for a normal subject for 24 hours.

sbioplot(normSim([],24,mealTable));

Simulate the glucose-insulin response for a diabetic subject for 24 hours.

sbioplot(diabSim([],24,mealTable));

 Simulate Model of Glucose-Insulin Response with Different Initial Conditions

3-25

Perform a scan using variants

Suppose you want to perform a parameter scan using an array of variants that contain
different initial conditions for different insulin impairments. For example, the model m1
has variants that correspond to the low insulin sensitivity and high insulin sensitivity. You
can simulate the model for both conditions via a single call to the SimFunction object.

Select the variants to scan.

varToScan = sbioselect(m1,'Name',...
 {'Low insulin sensitivity','High insulin sensitivity'});

Check which model parameters are being stored in each variant.

varToScan(1)

3 Structural Analysis

3-26

 SimBiology Variant - Low insulin sensitivity (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Vmx Value 0.0235
 2 parameter kp3 Value 0.0045

varToScan(2)

 SimBiology Variant - High insulin sensitivity (inactive)

 ContentIndex: Type: Name: Property: Value:
 1 parameter Vmx Value 0.094
 2 parameter kp3 Value 0.018

Both variants store alternate values for Vmx and kp3 parameters. You need to specify
them as input parameters when you create a SimFunction object.

Create a SimFunction object to scan the variants.

variantScan = createSimFunction(m1,{'Vmx','kp3'},...
 {'[Plasma Glu Conc]','[Plasma Ins Conc]'},'Dose');

Simulate the model and plot the results. Run 1 include simulation results for the low
insulin sensitivity and Run 2 for the high insulin sensitivity.

sbioplot(variantScan(varToScan,24,mealTable));

 Simulate Model of Glucose-Insulin Response with Different Initial Conditions

3-27

Low insulin sensitivity lead to increased and prolonged plasma glucose concentration.

Restore warning settings.

warning(warnSettings);

3 Structural Analysis

3-28

Simulation and Analysis

• “Model Simulation” on page 4-3
• “Deriving ODEs from Reactions” on page 4-5
• “Choosing a Simulation Solver” on page 4-8
• “SUNDIALS Solvers” on page 4-10
• “Stochastic Solvers” on page 4-12
• “Ensemble Runs of Stochastic Simulations” on page 4-17
• “Configuring Simulation Settings” on page 4-18
• “Create and Simulate a Simple Model” on page 4-19
• “Simulate the Yeast Heterotrimeric G Protein Cycle” on page 4-24
• “Sensitivity Calculation” on page 4-29
• “Calculate Sensitivities” on page 4-33
• “Identify Important Network Components from an Apoptosis Model Using Sensitivity

Analysis” on page 4-37
• “Perform a Parameter Scan” on page 4-42
• “Nonlinear Mixed-Effects Modeling” on page 4-44
• “Nonlinear Regression” on page 4-52
• “Supported Methods for Parameter Estimation” on page 4-59
• “Error Models” on page 4-62
• “Progress Plot” on page 4-63
• “Fit a One-Compartment Model to an Individual's PK Profile” on page 4-72
• “Estimate Category-Specific PK Parameters for Multiple Individuals” on page 4-80
• “Perform Hybrid Optimization Using sbiofit” on page 4-93
• “Fit a Two-Compartment Model to PK Profiles of Multiple Individuals” on page 4-98
• “Estimating the Bioavailability of a Drug” on page 4-108
• “Accelerating Model Simulations and Analyses” on page 4-116
• “Noncompartmental Analysis” on page 4-121

4

• “Stochastic Simulation of Radioactive Decay” on page 4-130

4 Simulation and Analysis

4-2

Model Simulation
SimBiology lets you simulate the dynamic behavior of a model. Before and during
simulation, SimBiology performs a series of steps including converting the model
reactions and rate rules into a set of ordinary differential equations (ODEs) that
mathematically describe the model dynamics.

Specifically, before simulation begins, SimBiology:

1 Verifies the model. For details, see “Model Verification” on page 3-2.
2 Determines the initial conditions, that is, the quantity values at the beginning of

simulation. In particular, SimBiology first initializes the quantity values based on the
values specified in the model. Second, it updates the values by replacing them with
the corresponding alternate values from variants if any. Then it updates the values
based on the initial assignments and repeated assignments. SimBiology evaluates
initial assignments and repeated assignments as a set of simultaneous constraints,
and their order do not affect the final quantity values. For details, see “Evaluation
Order of Rules” on page 2-19.

3 Constructs the ODEs based on model reactions and rate rules. Specifically, the left-
hand-side (LHS) of each ODE represents the time-derivative of a model quantity. The
right-hand-side (RHS) is defined using reaction fluxes that are derived from reaction
rates. For details, see “Deriving ODEs from Reactions” on page 4-5.

4 Converts doses to state transitions that occur at specific simulation times.
5 Converts event functions to state transitions that depend on the conditions specified

in the event triggers.

When the simulation begins, that is, at simulation time = 0, SimBiology:

1 Updates values based on initial assignments and repeated assignments.
2 Applies any state transitions due to dosing specified at simulation time = 0.
3 Logs the updated quantity values.

Note Events cannot cause transitions at time = 0 since events only apply when a trigger
changes from false to true. If a trigger is true at simulation time = 0, then no transition
has occurred and the event is not triggered.

 Model Simulation

4-3

During the simulation, SimBiology uses a solver to compute solutions for ODEs at
different times. Specifically, the solver determines appropriate time steps and performs
the following at each step.

1 Updates values for any repeated assignments.
2 Checks each event’s trigger condition. If it switches from false to true at this time

step, then it applies the state transitions according to the event functions, and
updates values for any repeated assignments.

3 Logs the updated quantity values.

To see the system of ODEs of a model, use getequations in the command line or open the
Equations View on page 1-49 in the SimBiology desktop.

Note If a model has algebraic equations, you must specify one of the following
differential-algebraic-equation (DAE) solvers: sundials, ode15s, ode23t. SimBiology
converts the algebraic equations to algebraic constraints and solves them along with the
rest of ODEs. For details about available solvers, see “Choosing a Simulation Solver” on
page 4-8.

See Also
Equations View on page 1-49 | getequations

Related Examples
• “Simulate the Yeast Heterotrimeric G Protein Cycle” on page 4-24
• “Create and Simulate a Simple Model” on page 4-19

More About
• “Simulation”
• “Choosing a Simulation Solver” on page 4-8
• “Configuring Simulation Settings” on page 4-18

4 Simulation and Analysis

4-4

Deriving ODEs from Reactions
For model simulation on page 4-3, SimBiology derives ordinary differential equations
(ODEs) from model reactions using mass-balance principles. The left-hand-side (LHS) of
each ODE is the time-derivative of a model quantity and the right-hand-side (RHS) is
defined using reaction fluxes that are derived from reaction rates and rate rules. In other
words, SimBiology represents a system of ODEs as:

ẋ = S ⋅ v

ẋ is an M-by-1 vector containing the rates of change for model quantities, S is an M-by-R
stoichiometry matrix on page 3-12, v is an R-by-1 flux vector. M equals the total number of
species, and R equals the total number of reactions in the model

During the conversion of model reactions into ODEs, SimBiology performs a dimensional
analysis to ensure each reaction flux has the dimension of substance/time such as
amount/time or mass/time. If the reaction rate has the dimension of concentration/
time, then SimBiology multiplies it by the compartment volume to get the reaction flux. If
the reaction rate has the dimension of substance/time, then the flux is identical to the
rate, and no volume-correction is performed. If there are no units specified with the
model, the default dimension for a species (DefaultSpeciesDimension) is
concentration, and that for a flux is substance/time. For such cases, the ODE is the
flux divided by a compartment volume to make the dimension of LHS and RHS consistent.
See the following figure for an illustration.

Suppose there is a reaction x —> y, with the reaction rate R1. The following figure
explains the dimensional analysis performed by SimBiology to make the dimensions of
LHS and RHS of an ODE consistent.

 Deriving ODEs from Reactions

4-5

See Also
getstoichmatrix (model)

4 Simulation and Analysis

4-6

More About
• “Model Simulation” on page 4-3
• “Determining the Stoichiometry Matrix for a Model” on page 3-12

 See Also

4-7

Choosing a Simulation Solver
To simulate a model, the SimBiology software converts a model to a system of differential
equations. It then uses a solver function to compute solutions for these equations at
different time intervals, giving the model's states and outputs over a span of time.

Available solvers are:

• ODE Solvers — These include Nonstiff Deterministic Solvers and Stiff Deterministic
Solvers. The solver functions implement numerical integration methods for solving
initial value problems for ordinary differential equations (ODEs). Beginning at the
initial time with initial conditions, they step through the time interval, computing a
solution at each time step. If the solution for a time step satisfies the solver's error
tolerance criteria, it is a successful step. Otherwise, it is a failed attempt; the solver
shrinks the step size and tries again. For more information, see ODE Solvers
(MATLAB).

• SUNDIALS Solvers — At a fundamental level the core algorithms for the SUNDIALS
solvers are similar to those for some of the solvers in the MATLAB ODE suite and work
as described above in ODE Solvers. SimBiology always uses the SUNDIALS solver to
perform sensitivity analysis on a model, regardless of what you have selected as the
SolverType. For more information, see “SUNDIALS Solvers” on page 4-10.

• Stochastic Solvers — Use with models containing a small number of molecules.
Stochastic solvers include stochastic simulation algorithm, explicit tau-leaping
algorithm, and implicit tau-leaping algorithm. For more information, see “Stochastic
Solvers” on page 4-12.

See Also

Related Examples
• “Simulate the Yeast Heterotrimeric G Protein Cycle” on page 4-24
• “Create and Simulate a Simple Model” on page 4-19

More About
• “Model Simulation” on page 4-3
• ODE Solvers (MATLAB)

4 Simulation and Analysis

4-8

• “SUNDIALS Solvers” on page 4-10
• “Stochastic Solvers” on page 4-12

 See Also

4-9

SUNDIALS Solvers
SUNDIALS (Suite of Nonlinear and Differential/Algebraic Equation Solvers) are part of a
freely available third-party package developed at Lawrence Livermore National
Laboratory. All other ODE solvers used for simulation of SimBiology models, such as
ode45 and ode15s, are part of the MATLAB ODE suite. SimBiology currently (R2018b or
later) uses SUNDIALS 3.1.0.

SimBiology always uses the SUNDIALS solver to perform sensitivity analysis on a model,
regardless of what you have selected as the SolverType in the configuration set.

In addition, if you are estimating model parameters using sbiofit or the “Fit Data” on
page 1-73 task with one of these gradient-based estimation functions: fmincon,
fminunc, lsqnonlin, or lsqcurvefit, SimBiology uses the SUNDIALS solver by
default to calculate sensitivities and use them to improve fitting. If you are using
sbiofit, you can turn off this sensitivity calculation feature by setting the
“'SensitivityAnalysis'” name-value pair argument to false. However, if you are using the
“Fit Data” on page 1-73 task, you cannot turn off this feature. It is recommended that you
keep the sensitivity analysis feature on whenever possible for more accurate gradient
approximations and better parameter fits.

When you specify sundials for the solver, the software chooses one of two SUNDIALS
solvers, CVODE or IDA, as appropriate for your model:

• CVODE is a solver for systems of ODEs, both nonstiff and stiff. This is used when a
model has no algebraic rules.

• IDA is a differential-algebraic equation (DAE) solver, used when one or more algebraic
rules are present.

For more information on the SUNDIALS solvers, see https://www.llnl.gov/casc/
sundials/description/description.html.

See Also

More About
• “Model Simulation” on page 4-3
• ODE Solvers (MATLAB)

4 Simulation and Analysis

4-10

https://www.llnl.gov/
https://www.llnl.gov/
https://www.llnl.gov/casc/sundials/description/description.html
https://www.llnl.gov/casc/sundials/description/description.html

• “Stochastic Solvers” on page 4-12

 See Also

4-11

Stochastic Solvers

In this section...
“When to Use Stochastic Solvers” on page 4-12
“Model Prerequisites for Simulating with a Stochastic Solver” on page 4-12
“What Happens During a Stochastic Simulation?” on page 4-13
“Stochastic Simulation Algorithm (SSA)” on page 4-13
“Explicit Tau-Leaping Algorithm” on page 4-13
“Implicit Tau-Leaping Algorithm” on page 4-14
“References” on page 4-15

When to Use Stochastic Solvers
The stochastic simulation algorithms provide a practical method for simulating reactions
that are stochastic in nature. Models with a small number of molecules can realistically
be simulated stochastically, that is, allowing the results to contain an element of
probability, unlike a deterministic solution.

Model Prerequisites for Simulating with a Stochastic Solver
Model prerequisites include:

• All reactions in the model must have their KineticLaw property set to MassAction.
• If your model contains events, you can simulate using the stochastic ssa solver. Other

stochastic solvers do not support events.
• Your model must not contain doses. No stochastic solvers support doses.

Additionally, if you perform an individual or population fitting on a model whose
configset object specifies a stochastic solver and options, be aware that during the
fitting SimBiology temporarily changes:

• SolverType property to the default solver of ode15s
• SolverOptions property to the options last configured for a deterministic solver

4 Simulation and Analysis

4-12

What Happens During a Stochastic Simulation?
During a stochastic simulation of a model, the software ignores any rate, assignment, or
algebraic rules if present in the model. Depending on the model, stochastic simulations
can require more computation time than deterministic simulations.

Tip When simulating a model using a stochastic solver, you can increase the
LogDecimation property of the configset object to record fewer data points and
decrease run time.

Stochastic Simulation Algorithm (SSA)
The Chemical Master Equation (CME) describes the dynamics of a chemical system in
terms of the time evolution of probability distributions. Directly solving for this
distribution is impractical for most realistic problems. The stochastic simulation algorithm
(SSA) instead efficiently generates individual simulations that are consistent with the
CME, by simulating each reaction using its propensity function. Thus, analyzing multiple
stochastic simulations to determine the probability distribution is more efficient than
directly solving the CME.

Advantage

• This algorithm is exact.

Disadvantages

• Because this algorithm evaluates one reaction at a time, it might be too slow for
models with a large number of reactions.

• If the number of molecules of any reactants is huge, it might take a long time to
complete the simulation.

Explicit Tau-Leaping Algorithm
Because the stochastic simulation algorithm might be too slow for many practical
problems, this algorithm was designed to speed up the simulation at the cost of some
accuracy. The algorithm treats each reaction as being independent of the others. It
automatically chooses a time interval such that the relative change in the propensity
function for each reaction is less than your error tolerance. After selecting the time
interval, the algorithm computes the number of times each reaction occurs during the

 Stochastic Solvers

4-13

time interval and makes the appropriate changes to the concentration of various chemical
species involved.

Advantages

• This algorithm can be orders of magnitude faster than the SSA.
• You can use this algorithm for large problems (if the problem is not numerically stiff).

Disadvantages

• This algorithm sacrifices some accuracy for speed.
• This algorithm is not good for stiff models.
• You need to specify the error tolerance so that the resulting time steps are of the order

of the fastest time scale.

Implicit Tau-Leaping Algorithm
Like the explicit tau-leaping algorithm, the implicit tau-leaping algorithm is also an
approximate method of simulation designed to speed up the simulation at the cost of
some accuracy. It can handle numerically stiff problems better than the explicit tau-
leaping algorithm. For deterministic systems, a problem is said to be numerically stiff if
there are “fast” and “slow” time scales present in the system. For such problems, the
explicit tau-leaping method performs well only if it continues to take small time steps that
are of the order of the fastest time scale. The implicit tau-leaping method can potentially
take much larger steps and still be stable. The algorithm treats each reaction as being
independent of others. It automatically selects a time interval such that the relative
change in the propensity function for each reaction is less than the user-specified error
tolerance. After selecting a time interval, the algorithm computes the number of times
each reaction occurs during the time interval and makes the appropriate changes to the
concentration of various chemical species involved.

Advantages

• This algorithm can be much faster than the SSA. It is also usually faster than the
explicit tau-leaping algorithm.

• You can use this algorithm for large problems and also for numerically stiff problems.
• The total number of steps taken is usually less than the explicit-tau-leaping algorithm.

Disadvantages

4 Simulation and Analysis

4-14

• This algorithm sacrifices some accuracy for speed.
• There is a higher computational burden for each step as compared to the explicit tau-

leaping algorithm. This leads to a larger CPU time per step.
• This method often dampens perturbations of the slow manifold leading to a reduced

state variance about the mean.

References

[1] Gibson M.A., Bruck J. (2000), “Exact Stochastic Simulation of Chemical Systems with
Many Species and Many Channels,” Journal of Physical Chemistry, 105:1876–
1899.

[2] Gillespie D. (1977), “Exact Stochastic Simulation of Coupled Chemical Reactions,” The
Journal of Physical Chemistry, 81(25): 2340–2361.

[3] Gillespie D. (2000), “The Chemical Langevin Equation,” Journal of Chemical Physics,
113(1): 297–306.

[4] Gillespie D. (2001), “Approximate Accelerated Stochastic Simulation of Chemically
Reacting Systems,” Journal of Chemical Physics,115(4):1716–1733.

[5] Gillespie D., Petzold L. (2004), “Improved Leap-Size Selection for Accelerated
Stochastic Simulation,” Journal of Chemical Physics, 119:8229–8234

[6] Rathinam M., Petzold L., Cao Y., Gillespie D. (2003), “Stiffness in Stochastic
Chemically Reacting Systems: The Implicit Tau-Leaping Method,” Journal of
Chemical Physics, 119(24):12784–12794.

[7] Moler, C. (2003), “Stiff Differential Equations Stiffness is a subtle, difficult, and
important concept in the numerical solution of ordinary differential equations,”
MATLAB News & Notes.

See Also

Related Examples
• “Analysis of Stochastic Ensemble Data in SimBiology®”

 See Also

4-15

More About
• “Ensemble Runs of Stochastic Simulations” on page 4-17
• “Model Simulation” on page 4-3
• “Choosing a Simulation Solver” on page 4-8

4 Simulation and Analysis

4-16

Ensemble Runs of Stochastic Simulations
Because stochastic simulations rely on an element of probability, sequential runs produce
different results. Therefore, multiple stochastic runs are needed to determine the
probability distribution of the simulation results.

Ensemble runs perform multiple simulations of a model using a stochastic solver. They let
you gather data from multiple stochastic runs of the model so you can compare and
analyze fluctuations in the behavior of a model over repeated stochastic simulations.

Running Ensemble Simulations
The following functions let you perform and analyze ensemble runs at the command line:

• sbioensemblerun — Perform a stochastic ensemble run of the MATLAB model
object.

• sbioensembleplot — Show a 2-D distribution plot or a 3-D shaded plot of the time
varying distribution of one or more specified species.

• sbioensemblestats — Get mean and variance as a function of time for all the
species in the model used to generate ensemble data by running sbioensemblerun.

See Also

More About
• “Stochastic Solvers” on page 4-12
• “Model Simulation” on page 4-3
• “Choosing a Simulation Solver” on page 4-8

 Ensemble Runs of Stochastic Simulations

4-17

Configuring Simulation Settings
A model has a configuration set (Configset object) associated with it to control the
simulation. You can edit the properties of a Configset object to control all aspects of
the simulation, including:

• Stop time (StopTime, MaximumNumberOfLogs, and MaximumWallClock properties)
• Time units (TimeUnits property)
• Solver and error tolerances (SolverType and SolverOptions properties)
• Maximum time step size (MaxStep property)
• Data to record (RuntimeOptions property)
• Frequency of data recording (OutputTimes and LogDecimation properties)
• Sensitivity analysis (SensitivityAnalysisOptions and SolverOptions properties)
• Dimensional analysis and unit conversion (CompileOptions property)

To view the Configset object, provide the model object as an input argument to
the getconfigset method.

To edit the properties of a Configset object, use the set method.

For more information on viewing and editing the stop time and other simulation settings,
see “Simulate the Yeast Heterotrimeric G Protein Cycle” on page 4-24.

See Also

More About
• “Model Simulation” on page 4-3

4 Simulation and Analysis

4-18

Create and Simulate a Simple Model
This example shows how to create and simulate a simple model of receptor-ligand kinetics
using the SimBiology Desktop.

Receptor-Ligand Kinetics

In this model, ligand L and receptor R species form receptor-ligand complexes through
reversible binding reactions. Using the mass action kinetics, the kinetic rate equation for
the rate of change in concentration of receptor-ligand complex can be defined as
dC
dt = kon ⋅ L ⋅ R− kof f ⋅ C, where kon and koff are forward and reverse rate constants, L, R,
and C are the concentrations of ligand, receptor, and receptor-ligand complex
respectively. The objective of this simulation is to find the concentrations of all three
species (L, R, and C) as the reaction progresses given initial amounts of species and rate
constants.

Create a Model

Open the SimBiology desktop by typing simbiology in the MATLAB Command Window
or clicking SimBiology on the Apps tab.

On the Home tab, select Add Model > Create New Blank Model. Name the model as
m1 when prompted.

Select Open > Diagram to open the diagram view.

Rename the compartment to cell by double-clicking the text unnamed.

Drag and drop three species blocks and one reaction block inside
the cell compartment.

Rename the species to L , R, and C as follows.

 Create and Simulate a Simple Model

4-19

Connect the Species and Reaction Blocks

To connect the ligand species block to the reaction block, press and hold the Ctrl key
(Windows® and Linux®) or the Option key (Macintosh®), click the L species block, and
drag the line to reaction_1. Similarly connect R to reaction_1 and reaction_1 to C.

Update the Reaction Properties and Initial Amounts of the Reactant Species

Update the reaction_1 properties to set the reaction as a reversible reaction, select
mass action as kinetic law, and define the forward and reverse rate parameters:

• Double-click the reaction_1 block to open the Reaction Properties dialog box.

4 Simulation and Analysis

4-20

• On the Settings tab, select Reversible.
• From KineticLaw drop-down list, select MassAction.
• Under Quantities Used by Reaction, enter kon as the name and 2.0E6 as the value

for Forward Rate Parameter, and koff and 1E-4 for Reverse Rate Parameter.

Update the initial amounts of reactant species by entering 5E-9 and 1E-8 as R and L
species values respectively. Click Close.

Add a Simulation Task

On the Model tab, select Add Task > Simulate model. This opens a new window called
Task Editor, where you can edit and run the task. Given the previous initial amounts and
rate parameters, the reaction reaches a saturated state after 300 seconds. Therefore, set

 Create and Simulate a Simple Model

4-21

the simulation stop time to 300 seconds instead of 10 seconds, which is the default stop
time. To do so, expand the Task Stop Time section, select Use a Stop Time specific to
this task only, and enter 300.

Simulate the Model

To simulate the model, click the Run button.

Once the simulation is finished, the Live Plots section shows the States versus Time plot
for each species.

4 Simulation and Analysis

4-22

See Also
More About
• “SimBiology Desktop”

 See Also

4-23

Simulate the Yeast Heterotrimeric G Protein Cycle
This example shows how to configure simulation settings, add an event to the model to
trigger a time-based change, save, and plot the simulation results. This example uses the
model described in “Model of the Yeast Heterotrimeric G Protein Cycle” on page B-17 to
illustrate model simulation.

Load the gprotein.sbproj project, which includes the variable m1, a SimBiology model
object.

sbioloadproject gprotein

Set the simulation solver to ode15s and set a stop time of 500 by editing the
SolverType and StopTime properties of the configset object associated with the
m1 model.

csObj = getconfigset(m1);
csObj.SolverType = 'ode15s';
csObj.StopTime = 500;

Specify to log simulation results of all species.

csObj.RuntimeOptions.StatesToLog = 'all';

Suppose the amount of the ligand species L is 0 at the start of the simulation, but it
increases to a particular amount at time = 100. Use sbioselect to select the species
named L and set its initial amount to 0. Use addevent to set up the desired event.

speciesObj = sbioselect(m1,'Type','species','Name','L');
speciesObj.InitialAmount = 0;
evt = addevent(m1,'time >= 100','L = 6.022E17');

Simulate the model.

[t,x,names] = sbiosimulate(m1);

Simulate the simulation results. Notice that the species L amount increases when the
event is triggered at simulation time 100. Changes in other species do not show up in the
plot due to the wide range in species amounts.

plot(t,x);
legend(names)
xlabel('Time');
ylabel('Amount');

4 Simulation and Analysis

4-24

To see the changes of other species, plot without the species L (the 5th species) data.

figure
plot(t,x(:,[1:4 6:8]));
legend(names{[1:4 6:8]});
xlabel('Time');
ylabel('Amount');

 Simulate the Yeast Heterotrimeric G Protein Cycle

4-25

Alternative to storing simulation data in separate outputs, such as t, x, and names as
above, you can store them all in a single SimData object. You can then use
selectbyname to extract arrays containing the simulation data of your interest.

simdata = sbiosimulate(m1);
sbioplot(simdata);

4 Simulation and Analysis

4-26

Expand Run 1 to see the names of species and parameter that are plotted.

simdata_noL = selectbyname(simdata, {'Ga','G','Gd','GaFrac','RL','R'});
sbioplot(simdata_noL);

 Simulate the Yeast Heterotrimeric G Protein Cycle

4-27

4 Simulation and Analysis

4-28

Sensitivity Calculation
In this section...
“About Calculating Sensitivities” on page 4-29
“Model Requirements for Calculating Sensitivities” on page 4-29
“SUNDIALS as Default Solver” on page 4-30
“Calculate Sensitivities using sbiosimulate or SimFunctionSensitivity Object” on page 4-
31
“References” on page 4-32

About Calculating Sensitivities
Calculating sensitivities lets you determine which species or parameter in a model is most
sensitive to a specific condition (for example, a drug), defined by a species or parameter.
Calculating sensitivities calculates the time-dependent sensitivities of all the species
states with respect to species initial conditions and parameter values in the model.

Thus, if a model has a species x, and two parameters y and z, the time-dependent
sensitivities of x with respect to each parameter value are the time-dependent derivatives

∂x
∂y , ∂x∂z

where, the numerator is the sensitivity output and the denominators are the sensitivity
inputs to sensitivity analysis.

For more information on the calculations performed, see “References” on page 4-32.

Model Requirements for Calculating Sensitivities
Sensitivity analysis is supported only by the ordinary differential equation (ODE) solvers.
The software calculates local sensitivities by combining the original ODE system for a
model with the auxiliary differential equations for the sensitivities. The additional
equations are derivatives of the original equations with respect to parameters. This
method is sometimes called “forward sensitivity analysis” or “direct sensitivity analysis”.
This larger system of ODEs is solved simultaneously by the solver.

SimBiology sensitivity analysis calculates derivatives by using a technique called complex-
step approximation. This technique yields accurate results for the vast majority of typical

 Sensitivity Calculation

4-29

reaction kinetics, which involve only simple mathematical operations and functions.
However, this technique can produce inaccurate results when analyzing models that
contain mathematical expressions that involve nonanalytic functions, such as abs. In this
case, SimBiology either disables the sensitivity analysis or warns you that the computed
sensitivities may be inaccurate. If sensitivity analysis gives questionable results for a
model with reaction rates that contain unusual functions, you may be running into
limitations of the complex-step technique. Contact MathWorks Technical Support for
additional information.

Note Models containing the following active components do not support sensitivity
analysis:

• Nonconstant compartments
• Algebraic rules
• Events

Note You can perform sensitivity analysis on a model containing repeated assignment
rules, but only if the repeated assignment rules do not determine species or parameters
used as inputs or outputs in sensitivity analysis.

SUNDIALS as Default Solver
SimBiology always uses the SUNDIALS solver to perform sensitivity analysis on a model,
regardless of what you have selected as the SolverType in the configuration set.

In addition, if you are estimating model parameters using sbiofit or the “Fit Data” on
page 1-73 task with one of these gradient-based estimation functions: fmincon,
fminunc, lsqnonlin, or lsqcurvefit, SimBiology uses the SUNDIALS solver by
default to calculate sensitivities and use them to improve fitting. If you are using
sbiofit, you can turn off this sensitivity calculation feature by setting the
“'SensitivityAnalysis'” name-value pair argument to false. However, if you are using the
“Fit Data” on page 1-73 task, you cannot turn off this feature. It is recommended that you
keep the sensitivity analysis feature on whenever possible for more accurate gradient
approximations and better parameter fits.

4 Simulation and Analysis

4-30

https://www.mathworks.com/support/contact_us.html?s_tid=doc2cs

Calculate Sensitivities using sbiosimulate or
SimFunctionSensitivity Object
You can calculate sensitivities using sbiosimulate or the SimFunctionSensitivity
object.

Calculate using sbiosimulate

Set the following properties of the SolverOptions property of your configset object,
before running the sbiosimulate function:

• SensitivityAnalysis — Set to true to calculate the time-dependent sensitivities of all
the species states defined by the Outputs property with respect to the initial
conditions of the species and the values of the parameters specified in Inputs.

• SensitivityAnalysisOptions — An object that holds the sensitivity analysis options in
the configuration set object. Properties of SensitivityAnalysisOptions are:

• Outputs — Specify the species and parameters for which you want to compute the
sensitivities. This is the numerator as described in “About Calculating Sensitivities”
on page 4-29.

• Inputs — Specify the species and parameters with respect to which you want to
compute the sensitivities. Sensitivities are calculated with respect to the
InitialAmount property of the specified species. This is the denominator, described
in “About Calculating Sensitivities” on page 4-29.

• Normalization — Specify the normalization for the calculated sensitivities:

• 'None' — No normalization
• 'Half' — Normalization relative to the numerator (species output) only
• 'Full' — Full dedimensionalization

For more information about normalization, see Normalization.

After setting SolverOptions properties, calculate the sensitivities of a model by
providing the model object as an input argument to the sbiosimulate function.

The sbiosimulate function returns a SimData object containing the following
simulation data:

• Time points, state data, state names, and sensitivity data

 Sensitivity Calculation

4-31

• Metadata such as the types and names for the logged states, the configuration set
used during simulation, and the date of the simulation

A SimData object is a convenient way of keeping time data, state data, sensitivity data,
and associated metadata together. A SimData object has properties and methods
associated with it, which you can use to access and manipulate the data.

For illustrated examples, see:

• “Calculate Sensitivities” on page 4-33
• “Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast

Heterotrimeric G Protein Cycle”

Calculate using SimFunctionSensitivity object

Create a SimFunctionSensitivity object using the createSimFunction
specifying the 'SensitivityOutputs' and 'SensitivityInputs' name-value pair
arguments. Then execute the object. For an illustrated example, see “Calculate
Sensitivities Using SimFunctionSensitivity Object”.

References
Martins, J.R.R.A., Kroo, I.M., and Alanso, J.J. (Jan. 2000). An automated method for
sensitivity analysis using complex variables. AIAA Paper 2000–0689.

Martins, J.R.R.A., Sturdza, P., and Alanso, J.J. (Jan. 2001). The connection between the
complex-step derivative approximation and algorithmic differentiation. AIAA Paper 2001–
0921.

Ingalls, B.P, and Sauro, H.M. (2003). Sensitivity analysis of stoichiometric networks: an
extension of metabolic control analysis to non-steady state trajectories. J Theor Biol.
222(1), 23–36.

4 Simulation and Analysis

4-32

Calculate Sensitivities

In this section...
“Overview” on page 4-33
“Load and Configure the Model for Sensitivity Analysis” on page 4-34
“Perform Sensitivity Analysis” on page 4-35
“Extract and Plot Sensitivity Data” on page 4-35

Overview
About the Example Model

This example uses the model described in “Model of the Yeast Heterotrimeric G Protein
Cycle” on page B-17 to illustrate SimBiology sensitivity analysis options.

This table lists the reactions used to model the G protein cycle and the corresponding rate
parameters (rate constants) for each mass action reaction. For reversible reactions, the
forward rate parameter is listed first.

No. Name Reaction1 Rate
Parameters

1 Receptor-ligand interaction L + R <-> RL kRL, kRLm
2 Heterotrimeric G protein

formation
Gd + Gbg -> G kG1

3 G protein activation RL + G -> Ga + Gbg + RL kGa
4 Receptor synthesis and

degradation
R <-> null kRdo, kRs

5 Receptor-ligand degradation RL -> null kRD1
6 G protein inactivation Ga -> Gd kGd
1 Legend of species: L = ligand (alpha factor), R = alpha-factor receptor, Gd = inactive
G-alpha-GDP, Gbg = free levels of G-beta:G-gamma complex, G = inactive Gbg:Gd
complex, Ga = active G-alpha-GTP

 Calculate Sensitivities

4-33

About the Example

Assume that you are calculating the sensitivity of species Ga with respect to every
parameter in the model. Thus, you want to calculate the time-dependent derivatives

∂(Ga)
∂ kRLm , ∂ Ga

∂ kRL , ∂ Ga
∂ kG1 , ∂ Ga

∂ kGa ...

Load and Configure the Model for Sensitivity Analysis
1 The gprotein_norules.sbproj project contains a model that represents the wild-

type strain (stored in variable m1).

sbioloadproject gprotein_norules m1
2 The options for sensitivity analysis are in the configuration set object. Get the

configuration set object from the model.

csObj = getconfigset(m1);
3 Use the sbioselect function, which lets you query by type, to retrieve the Ga

species from the model.

Ga = sbioselect(m1,'Type','species','Where','Name','==','Ga');
4 Set the Outputs property of the SensitivityAnalysisOptions object to the Ga

species.

csObj.SensitivityAnalysisOptions.Outputs = Ga;
5 Use the sbioselect function, which lets you query by type, to retrieve all the

parameters from the model and store the vector in a variable, pif.

pif = sbioselect(m1,'Type','parameter');
6 Set the Inputs property of the SensitivityAnalysisOptions object to the pif

variable containing the parameters.

csObj.SensitivityAnalysisOptions.Inputs = pif;
7 Enable sensitivity analysis in the configuration set object (csObj) by setting the

SensitivityAnalysis option to true.

csObj.SolverOptions.SensitivityAnalysis = true;
8 Set the Normalization property of the SensitivityAnalysisOptions object to

perform 'Full' normalization.

csObj.SensitivityAnalysisOptions.Normalization = 'Full';

4 Simulation and Analysis

4-34

Perform Sensitivity Analysis
Simulate the model and return the data to a SimData object:

simDataObj = sbiosimulate(m1);

Extract and Plot Sensitivity Data
You can extract sensitivity results using the getsensmatrix method of a SimData
object. In this example, R is the sensitivity of the species Ga with respect to eight
parameters. This example shows how to compare the variation of sensitivity of Ga with
respect to various parameters, and find the parameters that affect Ga the most.

1 Extract sensitivity data in output variables T (time), R (sensitivity data for species
Ga), snames (names of the states specified for sensitivity analysis), and ifacs
(names of the input factors used for sensitivity analysis):

[T, R, snames, ifacs] = getsensmatrix(simDataObj);
2 Because R is a 3-D array with dimensions corresponding to times, output factors, and

input factors, reshape R into columns of input factors to facilitate visualization and
plotting:

R2 = squeeze(R);
3 After extracting the data and reshaping the matrix, plot the data:

figure;
plot(T,R2);
title('Normalized Sensitivity of Ga With Respect To Various Parameters');
xlabel('Time (seconds)');
ylabel('Normalized Sensitivity of Ga');
leg = legend(ifacs, 'Location', 'NorthEastOutside');
set(leg, 'Interpreter', 'none');

 Calculate Sensitivities

4-35

From the previous plot you can see that Ga is most sensitive to parameters kGd, kRs,
kRD1, and kGa. This suggests that the amounts of active G protein in the cell depends on
the rate of:

• Receptor synthesis
• Degradation of the receptor-ligand complex
• G protein activation
• G protein inactivation

4 Simulation and Analysis

4-36

Identify Important Network Components from an
Apoptosis Model Using Sensitivity Analysis

This example shows how to identify important network components in an apoptosis model
using sensitivity analysis in the SimBiology desktop.

Apoptosis

An apoptosis is programmed cell death which is triggered by a wide variety of stimuli or
signaling events. When a cell encounters such signals, the level of Casp3* (activated
caspase3 protease) increases leading to an increased break down of proteins important
for cell survival. As a result, the cell dies. Research has shown that the level of Casp3* is
controlled by XIAP (X-linked inhibitor of apoptosis protein) that binds to Casp3* and
inactivates it so that Casp3* can no longer break down essential proteins of the cell, thus
effectively controlling the apoptosis [1], [2].

Sensitivity Analysis

Most biological networks are complex with several interactions and feedback loops, and it
might not be obvious to see which model component(s) should be controlled to have a
desired outcome such as a decrease in concentration of a particular species.

Sensitivity analysis on page 4-29 lets you determine which species or parameters in a
model are most sensitive to a specific condition, such as a drug, thus providing insights
on important targets within the model.

Using SimBiology you can calculate time-dependent sensitivities of all the species states
with respect to species initial conditions and parameter values in the model. The objective
of this simulation is to find important network components in an apoptosis model based
on a hypothesis that the apoptosis signal is directly proportional to the level of Casp3* in
the cell. This example shows how to calculate the sensitivity of species Casp3* with
respect to every species in the model as follows:

∂(Casp3 *)
∂(Casp3) , ∂(Casp3 *)

∂(Casp8) , ∂(Casp3 *)
∂(XIAP) , ...

Load the Apoptosis Model

Open the SimBiology desktop by typing simbiology in the MATLAB Command Window
or clicking SimBiology on the Apps tab.

 Identify Important Network Components from an Apoptosis Model Using Sensitivity Analysis

4-37

On the Home tab, click Open and navigate to the folder matlabroot\help\toolbox
\simbio\examples, where matlabroot is the folder where MATLAB is installed, and
open the SimBiology project file named apoptosis.sbproj.

Note If you are using a Macintosh platform, press Command+Shift+G in the File
Browser dialog box, and enter the full path to the folder.

By default, SimBiology opens the model in the Table Overview mode, where it shows the
model’s reactions and quantity in a tabular format. The model contains nine species, nine
parameters, and six reactions. To view the model graphically, select Open > Diagram.

Add a Sensitivity Analysis Task

On the Model tab, select Add Task > Calculate sensitivities.

Under Normalization for Computed Sensitivities, select Full (full
dedimensionalization), which specifies the data should be made dimensionless. For
more information, see Normalization.

Specify the species for sensitivity calculations by adding all nine species under the
Sensitivities to Compute section. The fastest way to do this is to use the context menu

4 Simulation and Analysis

4-38

of the table and select Add All Species. Alternatively, you can drag and drop from
Component Palette or enter each species name manually.

Since the level of Casp3* is hypothesized to control apoptosis, select Cell.[Casp3*] as
the only output. Select the rest of the species as inputs. Multiple sensitivity inputs and
outputs can be set or cleared by selecting multiple rows and using the context menu
options. If you want to find out how sensitive Casp3* is to its initial concentration over
the course of simulation, select Cell.[Casp3*] as an input as well.

Perform Sensitivity Calculation

Click the Run button on the Editor tab to perform the sensitivity analysis.

After calculation, the Live Plots section shows two figures: States vs Time figure (top) and
Sensitivity figure (bottom), which contains sensitivity values of Casp3* with respect to all
species integrated across time.

 Identify Important Network Components from an Apoptosis Model Using Sensitivity Analysis

4-39

4 Simulation and Analysis

4-40

The plot shows that Casp3* is most sensitive to XIAP concentration since XIAP has the
highest sensitivity value among all the other species. Therefore, such sensitivity analysis
indicates that XIAP could be one of the most important network components or drug
targets in this model to control the Casp3* level and subsequent apoptosis events.

References
[1] Aldridge, B.B., Haller, G., Sorger, P.K., Lauffenburger, D.A. (2006). Direct Lyapunov

exponent analysis enables parametric study of transient signalling governing cell
behaviour. Syst Biol (Stevenage) 153, 425-432.

[2] Wikipedia. (2013). XIAP, http://en.wikipedia.org/wiki/XIAP

See Also

More About
• “SimBiology Desktop”

 See Also

4-41

Perform a Parameter Scan
This example shows how to perform a parameter scan by simulating a model multiple
times, each time varying the value of a parameter.

In the model described in Model of the Yeast Heterotrimeric G Protein Cycle, the rate of G
protein inactivation (kGd) is much lower in the mutant strain versus the wild-type strain
(kGd = 0.004 versus kGd = 0.11), which explains higher levels of activated G protein
(Ga) in the mutant strain. For a detailed look at how varying the level of kGd affects the
level of Ga, perform a parameter scan over different values of kGd.

Load the gprotein.sbproj project, which includes the variable m1, a model object.

sbioloadproject gprotein

Create a vector of five evenly spaced values for kGd ranging from 0.001 to 0.15.

kGdValues = linspace(1e-3,0.15,5)';

Create a SimFunction object, where kGd is the input parameter to scan, and Ga is the
observed species. Pass in an empty array [] as the last input argument to denote there are
no dosed species.

simfunc = createSimFunction(m1,{'kGd'},{'Ga'},[]);

Simulate the model multiple times with different kGd values. Set the stop time to 1000.

sd = simfunc(kGdValues,1000);

Plot the simulation results to see how varying the level of kGd affects the level of Ga.

sbioplot(sd);

4 Simulation and Analysis

4-42

See Also
SimFunction object | createSimFunction

More About
• “Model of the Yeast Heterotrimeric G Protein Cycle” on page B-17

 See Also

4-43

Nonlinear Mixed-Effects Modeling

In this section...
“What Is a Nonlinear Mixed-Effects Model?” on page 4-44
“Nonlinear Mixed-Effects Modeling Workflow” on page 4-46
“Specify a Covariate Model” on page 4-47
“Specify an Error Model” on page 4-49
“Maximum Likelihood Estimation” on page 4-49
“Obtain the Fitting Status” on page 4-50

What Is a Nonlinear Mixed-Effects Model?
A mixed-effects model is a statistical model that incorporates both fixed effects and
random effects. Fixed effects are population parameters assumed to be the same each
time data is collected, and random effects are random variables associated with each
sample (individual) from a population. Mixed-effects models work with small sample sizes
and sparse data sets, and are often used to make inferences on features underlying
profiles of repeated measurements from a group of individuals from a population of
interest.

As with all regression models, their purpose is to describe a response variable as a
function of the predictor (independent) variables. Mixed-effects models, however,
recognize correlations within sample subgroups, providing a reasonable compromise
between ignoring data groups entirely, thereby losing valuable information, and fitting
each group separately, which requires significantly more data points.

For instance, consider population pharmacokinetic data that involve the administration of
a drug to several individuals and the subsequent observation of drug concentration for
each individual, and the objective is to make a broader inference on population-wide
parameters while considering individual variations. The nonlinear function often used for
such data is an exponential function since many drugs once distributed in a patient are
eliminated in an exponential fashion. Thus the measured drug concentration of an
individual can be described as:

yi j =
Di
V e−kiti j + aεi j,

4 Simulation and Analysis

4-44

where yij is the jth response of the ith individual, Di is the dose administered to the ith
individual, V is the population mean volume of distribution, a is an error parameter, and
εi j ∼ N(0, 1), representing some measurement error. The elimination rate parameter (ki)

depends on the clearance and volume of the central compartment ki =
Cli
V . Both ki and Cli

are for the ith patient, meaning they are patient-specific parameters.

To account for variations between individuals, assume that the clearance is a random
variable depending on individuals, varying around the population mean. For the ith
individual, Cli = θ1 + ηi, where θ1 is the fixed effect (population parameter for the
clearance) and ηi is the random effect, that is, the deviation of the ith individual from the
mean clearance of the population ηi ∼ Ν(0, ση

2).

If you have any individual-specific covariates such as weight w that linearly relate to the
clearance, you can try explaining some of the between-individual differences. For
example, if wi is the weight of the ith individual, then the model becomes
Cli = θ1 + θ2 * wi + ηi, where θ2 is the fixed effect of weight on clearance.

A general nonlinear mixed-effects (NLME) model with constant variance is as follows:

yi j = f (xi j, pi) + εi j

pi = Aiθ + Biηi

εi j ∼ N(0, σ2)
ηi ∼ N(0, Ψ)

yij Data vector of individual-specific response values
f General, real-valued function of pi and xij

xij Data matrix of individual-specific predictor values
pi Vector of individual-specific model parameters
θ Vector of fixed effects, modeling population parameters
ηi Vector of multivariate normally distributed individual-specific random effects
Ai Individual-specific design matrix for combining fixed effects
Bi Individual-specific design matrix for combining random effects
εij Vector of group-specific errors, assumed to be independent, identically,

normally distributed, and independent of ηi

 Nonlinear Mixed-Effects Modeling

4-45

Ψ Covariance matrix for the random effects
σ2 Error variance, assumed to be constant across observations

In addition to the constant error model, there are other error models such as
proportional, exponential, and combined error models. For details, see “Error Models” on
page 4-62.

Nonlinear Mixed-Effects Modeling Workflow
SimBiology lets you estimate fixed effects θs and random effects ηs as well as the
covariance matrix of random effects Ψ. However, you cannot alter A and B design
matrices since they are automatically determined from the covariate model you specify.
Use the sbiofitmixed function to estimate nonlinear mixed-effects parameters. These
steps show one of the workflows you can use at the command line.

1 Import data.
2 Convert the data to the groupedData format.
3 Define dosing data. For details, see “Doses” on page 2-42.
4 Create a structural model (one-, two-, or multicompartment model). For details, see

“Create Pharmacokinetic Models” on page 5-22.
5 Create a covariate model to define parameter-covariate relationships if any. For

details, see “Specify a Covariate Model” on page 4-47.
6 Map the response variable from data to the model component. For example, if you

have the measured drug concentration data for the central compartment, then map it
to the drug species in the central compartment (typically the Drug_Central
species).

7 Specify parameters to estimate using the estimatedInfo object. It lets you
optionally specify parameter transformations, initial values, and parameter bounds.
Supported transforms are log, probit, logit, and none (no transform).

8 (Optional) You can also specify an error model. The default model is the constant
error model. For instance, you can change it to the proportional error model if you
assume the measurement error is proportional to the response data. See “Specify an
Error Model” on page 4-49.

9 Estimate parameters using sbiofitmixed, which performs “Maximum Likelihood
Estimation” on page 4-49.

4 Simulation and Analysis

4-46

10 (Optional) If you have a large, complex model, the estimation might take longer.
SimBiology lets you check the status of fitting as it progresses. See “Obtain the
Fitting Status” on page 4-50.

For a complete workflow example, see “Modeling the Population Pharmacokinetics of
Phenobarbital in Neonates”.

Specify a Covariate Model
When specifying a nonlinear mixed-effects model, you define parameter-covariate
relationship using a covariate model (CovariateModel object). For example, suppose
you have PK profile data for multiple individuals and are estimating three parameters
(clearance Cl, compartment volume V, and elimination rate k) that have both fixed and
random effects. Assume the clearance Cl has a correlation with a covariate variable
weight (w) of each individual. Each parameter can be described as a linear combination of
fixed and random effects.

Cli = θ1 + θ2 * wi + η1i,

Vi = θ3 + η2i,

ki = θ4 + η3i,

where θs represent fixed effects and ηs represent random effects, which are normally

distributed
η1i
η2i
η3i

∼ MVN(0, Ψ). By default, the random effects are uncorrelated. So

Ψ =

σ1
2 0 0

0 σ2
2 0

0 0 σ3
2

.

1 Construct an empty CovariateModel object.

covModel = CovariateModel;
2 Set the Expression property to define the relationships between parameters (Cl, V,

and k) and covariate (w). You must use theta as a prefix for all fixed effects and eta
for random effects.

covModel.Expression = {'Cl = theta1 + theta2*w + eta1','V = theta3 + eta2','k = theta4 + eta3'};

 Nonlinear Mixed-Effects Modeling

4-47

The FixedEffectNames property displays the fixed effects defined in the model.

covModel.FixedEffectNames

ans =

 'theta1'
 'theta3'
 'theta4'
 'theta2'

The FixedEffectDescription property displays which fixed effects correspond to
which parameter. For instance, theta1 is the fixed effect for the Cl parameter, and
theta2 is the fixed effect for the weight covariate that has a correlation with Cl
parameter, denoted as Cl/w.

covModel.FixedEffectDescription

ans =

 'Cl'
 'V'
 'k'
 'Cl/w'

3 Specify initial estimates for the fixed effects. Create a structure containing initial
estimates using the constructDefaultFixedEffectValues function.

initialEstimates = constructDefaultFixedEffectValues(covModel)

initialEstimates =

 theta1: 0
 theta2: 0
 theta3: 0
 theta4: 0

initialEstimates.theta1 = 1.20;
initialEstimates.theta2 = 0.30;
initialEstimates.theta3 = 0.90;
initialEstimates.theta4 = 0.10;

4 Set the initial estimates to the FixedEffectValues property.

covModel.FixedEffectValues = initialEstimates;

4 Simulation and Analysis

4-48

Specify a Covariance Pattern Among Random Effects

By default, sbiofitmixed assumes no covariance among random effects, that is, a
diagonal covariance matrix is used. Suppose you have η1, η2, and η3, and there is a
covariance σ12 between η1 and η2. You can indicate this using a pattern matrix where 1
indicates a variance or covariance parameter which is estimated by sbiofitmixed. For

instance, a pattern matrix
1 1 0
1 1 0
0 0 1

 represents

σ1
2 σ12 0

σ21 σ2
2 0

0 0 σ3
2

.

Define such a pattern using an options struct.

options.CovPattern = [1 1 0;1 1 0;0 0 1];

Then you can use options as an input argument for sbiofitmixed. For a complete
workflow, see “Nonlinear Mixed-Effects Modeling Workflow” on page 4-46.

Specify an Error Model
During the “Nonlinear Mixed-Effects Modeling Workflow” on page 4-46, you can
optionally specify an error model using a structure.

options.ErrorModel = 'proportional';

Then you can use options as one of the input arguments when you run sbiofitmixed.

Supported error models are constant (default), proportional, combined, and exponential
models. For details, see “Error Models” on page 4-62.

Maximum Likelihood Estimation
SimBiology estimates the parameters of a nonlinear mixed-effects model by maximizing a
likelihood function. The function can be described as:

p(y θ, σ2, Ψ) =∫p(y θ, η, σ2)p(η Ψ) dη,

where y is the response data, θ is the vector of fixed effects, σ2 is the error variance, Ψ is
the covariance matrix for random effects, and η is the vector of unobserved random

 Nonlinear Mixed-Effects Modeling

4-49

effects. p(y θ, σ2, Ψ) is the marginal density of y, p(y θ, η, σ2) is the conditional density of
y given the random effects η, and the prior distribution of η is p(η Ψ).

This integral contains a nonlinear function of the fixed effects and variance parameters
that you want to maximize. Typically for nonlinear models, the integral does not have a
closed form, and needs to be solved numerically, which involves simulating the function at
each time step of an optimization algorithm. Therefore, the estimation can take a long
time for complex models, and initial values of parameters might play an important role for
successful convergence. SimBiology provides these iterative algorithms to solve the
integral and maximize the likelihood if you have Statistics and Machine Learning Toolbox.

• LME — Use the likelihood for the linear mixed-effects model at the current conditional
estimates of θ and η. This is the default.

• RELME — Use the restricted likelihood for the linear mixed-effects model at the current
conditional estimates of θ and η.

• FO — First-order (Laplacian) approximation without random effects.
• FOCE — First-order (Laplacian) approximation at the conditional estimates of θ.
• stochastic EM — Use the Expectation-Maximization (EM) algorithm in which the E

step is replaced by a stochastic procedure.

For a complete workflow, see “Nonlinear Mixed-Effects Modeling Workflow” on page 4-46.

Obtain the Fitting Status
During the estimation of mixed-effects parameters of a large and complex model that may
take a longer time, you may want to obtain the status of fitting as it progresses. Set
'ProgressPlot' to true when you run sbiofitmixed to display the progress of the
fitting. For details, see “Progress Plot” on page 4-63.

For a complete workflow, see “Nonlinear Mixed-Effects Modeling Workflow” on page 4-46.

See Also
sbiofit | sbiofitmixed

More About
• “Progress Plot” on page 4-63

4 Simulation and Analysis

4-50

• “Nonlinear Regression” on page 4-52
• “Supported Methods for Parameter Estimation” on page 4-59

 See Also

4-51

Nonlinear Regression
In this section...
“What is Nonlinear Regression?” on page 4-52
“Fitting Options in SimBiology” on page 4-53
“Maximum Likelihood Estimation” on page 4-55
“Fitting Workflow for sbiofit” on page 4-57

What is Nonlinear Regression?
The purpose of regression models is to describe a response variable as a function of
independent variables. Multiple linear regression models describe the response as a
linear combination of coefficients and functions of independent variables. Nonlinearities
can be modeled using nonlinear functions of independent variables. However, the
coefficients always enter the model in a linear fashion.

Nonlinear regression models are more mechanistic models of nonlinear relationships
between the response and independent variables. The parameters can enter the model as
exponential, trigonometric, power, or any other nonlinear function. The unknown
parameters in the model are estimated by minimizing a statistical criterion such as the
negative log likelihood or the sum of squared deviations between observed and predicted
values.

In the case of pharmacokinetic (PK) studies, the response data usually represent some
measured drug concentrations, and independent variables are often dose and time. The
nonlinear function often used for such data is an exponential function since many drugs
once distributed in a patient are eliminated in an exponential fashion. One PK parameter
to estimate in this case is the rate at which the drug is eliminated from the body given the
concentration-time data.

For instance, consider drug plasma concentration data from a single individual after an
intravenous bolus dose measured at different time points with some errors. Assume the
measured drug concentration follows a monoexponential decline: Ct = C0e−ket + aε.

This model describes the time course of drug concentration in the body (Ct), as a function
of the drug concentration after an intravenous bolus dose at t = 0 (C0), time (t), and
elimination rate parameter (ke). ε is the mean-zero and unit-variance variable, that is,

4 Simulation and Analysis

4-52

ε ∼ N(0, 1) representing the measurement error and a is the error model parameter
(here, standard deviation).

More generically, you can write the model as y j = f (x j; p) + g(ε j), where yj is the jth
response of interest (such as Ct), f is a function of known quantities x (such as C0 and time
t), model parameters p (such as ke), and an error model g(ε j).

If there are multiple observations on multiple individuals, the model becomes
yi j = f (xi j; p j) + g(εi j) where yij is the jth observation of the ith individual. Additionally, you
can categorize your data into different groups based on different categories such as sex,
age, or height.

Fitting Options in SimBiology
This table summarizes nonlinear regression options available in SimBiology.

Fitting Option Example
Individual-specific parameter estimation
(Unpooled fitting)

Fit each individual separately, resulting in
one set of parameter estimates for each
individual.

 Nonlinear Regression

4-53

Category- or group-specific parameter
estimation

Fit each category or group separately,
resulting in one set of parameter estimates
for each category.

Population-wide parameter estimation
(Pooled fitting)

Fit all of the data pooled together, resulting
in just one set of parameter estimates.

In addition, SimBiology supports four kinds of error models for measured or observed
responses, namely, constant (default), proportional, combined, and exponential. For
details, see “Error Models” on page 4-62. Depending on the optimization method, you
can specify an error model for each response or all responses. For details, see “Supported
Methods for Parameter Estimation” on page 4-59.

4 Simulation and Analysis

4-54

Maximum Likelihood Estimation
SimBiology estimates parameters by the method of maximum likelihood. Rather than
directly maximizing the likelihood function, SimBiology constructs an equivalent
minimization problem. Whenever possible, the estimation is formulated as a weighted
least squares (WLS) optimization that minimizes the sum of the squares of weighted
residuals. Otherwise, the estimation is formulated as the minimization of the negative of
the logarithm of the likelihood (NLL). The WLS formulation often converges better than
the NLL formulation, and SimBiology can take advantage of specialized WLS algorithms,
such as the Levenberg-Marquardt algorithm implemented in lsqnonlin and lsqcurvefit.
SimBiology uses WLS when there is a single error model that is constant, proportional, or
exponential. SimBiology uses NLL if you have a combined error model or a multiple-error
model, that is, a model having an error model for each response.

sbiofit supports different optimization methods, and passes in the formulated WLS or
NLL expression to the optimization method that minimizes it.

 Expression that is being minimized
Weighted
Least
Squares
(WLS)

For the constant error model, ∑
i

N
yi− f i

2

For the proportional error model, ∑
i

N yi− f i
2

f i
2/ fgm

2

For the exponential error model, ∑
i

N
lnyi− lnf i

2

For numeric weights, ∑
i

N yi− f i
2

wgm/wi

Negative
Log-
likelihood
(NLL)

For the combined error model and multiple-error model,

∑
i

N
yi− f i

2

2σi
2 +∑

i

N

ln 2πσi
2

The variables are defined as follows.

N Number of experimental observations

 Nonlinear Regression

4-55

yi The ith experimental observation
f i Predicted value of the ith observation
σi Standard deviation of the ith observation.

• For the constant error model, σi = a
• For the proportional error model, σi = b f i

• For the combined error model, σi = a + b f i

fgm
fgm = ∏

i

N
f i

1 N

wi The weight of the ith predicted value
wgm

wgm = ∏
i

N
wi

1 N

When you use numeric weights or the weight function, the weights are assumed to be

inversely proportional to the variance of the error, i.e., σi
2 = a2

wi
 where a is the constant

error parameter. If you use weights, you cannot specify an error model except the
constant error model.

Various optimization methods have different requirements on the function that is being
minimized. For some methods, the estimation of model parameters is performed
independently of the estimation of the error model parameters. The following table
summarizes the error models and any separate formulas used for the estimation of error
model parameters, where a and b are error model parameters and e is the standard
mean-zero and unit-variance (Gaussian) variable.

Error
Model

Error Parameter Estimation Function

'constan
t': yi = f i

+ ae
a2 = 1

N∑i
N

yi− f i
2

4 Simulation and Analysis

4-56

Error
Model

Error Parameter Estimation Function

'exponen
tial':
yi = f iexp
(ae)

a2 = 1
N∑i

N
lnyi− lnf i

2

'proport
ional':
yi = f i
+ b f i e

b2 = 1
N∑i

N yi− f i
f i

2

'combine
d':
yi = f i
+ a + b f i

e

Error parameters are included in the minimization.

Weights
a2 = 1

N∑i
N

yi− f i
2wi

Note nlinfit only support single error models, not multiple-error models, that is,
response-specific error models. For a combined error model, it uses an iterative WLS
algorithm. For other error models, it uses the WLS algorithm as described previously. For
details, see nlinfit.

Fitting Workflow for sbiofit
The following steps show one of the workflows you can use at the command line to fit a
PK model.

1 Import data.
2 Convert the data to the groupedData format.
3 Define dosing data. For details, see “Doses” on page 2-42.
4 Create a structural model (one-, two-, or a multicompartment model). For details, see

“Create Pharmacokinetic Models” on page 5-22.
5 Map the response variable from data to the model component. For example, if you

have the measured drug concentration data for the central compartment, then map it

 Nonlinear Regression

4-57

to the drug species in the central compartment (typically the Drug_Central
species).

6 Specify parameters to estimate using an estimatedInfo object. Optionally, you
can specify parameter transformations, initial values, and parameter bounds.

7 Perform parameter estimation using sbiofit.

For illustrated examples, see the following.

• “Fit a One-Compartment Model to an Individual's PK Profile”
• “Fit a Two-Compartment Model to PK Profiles of Multiple Individuals”
• “Estimate Category-Specific PK Parameters for Multiple Individuals”

See Also
EstimatedInfo object | groupedData | sbiofit | sbiofitmixed

More About
• “Multiple Parameter Estimations in Parallel”
• “Parameter Estimation with Hybrid Solvers”
• “Progress Plot” on page 4-63
• “Supported Methods for Parameter Estimation” on page 4-59

4 Simulation and Analysis

4-58

Supported Methods for Parameter Estimation
SimBiology supports a variety of optimization methods for least-squares and mixed-effects
estimation problems. Depending on the optimization method, you can specify parameter
bounds for estimated parameters as well as response-specific error models, that is, an
error model for each response variable. The following table summarizes the supported
optimization methods in SimBiology, fitting options, and the corresponding toolboxes that
are required in addition to MATLAB and SimBiology.

Method Addition
al
Toolbox
Require
d

Support
s
Paramet
er
Bounds

Uses
Paramet
er
Sensitivi
ties†

Respons
e-
specific
Error
Models

Fixed or
Mixed
Effects

Support
s
Stochast
ic EM
Algorith
m

SimBiolo
gy
Function
to Use

fminsearch — Yes* No Yes Fixed No sbiofit
scattersearch — Yes Depends

on the
selected
local
solver.

Depends
on the
selected
local
solver.

Fixed No

nlinfit Statistics
and
Machine
Learning
Toolbox

Yes* No No Fixed No

fminunc Optimizat
ion
Toolbox

Yes* Yes Yes Fixed No

fmincon Optimizat
ion
Toolbox

Yes Yes Yes Fixed No

lsqcurvefi
t

Optimizat
ion
Toolbox

Yes Yes Yes Fixed No

 Supported Methods for Parameter Estimation

4-59

Method Addition
al
Toolbox
Require
d

Support
s
Paramet
er
Bounds

Uses
Paramet
er
Sensitivi
ties†

Respons
e-
specific
Error
Models

Fixed or
Mixed
Effects

Support
s
Stochast
ic EM
Algorith
m

SimBiolo
gy
Function
to Use

lsqnonlin Optimizat
ion
Toolbox

Yes Yes Yes Fixed No

patternsea
rch

Global
Optimizat
ion
Toolbox

Yes No Yes Fixed No

ga Global
Optimizat
ion
Toolbox

Yes No Yes Fixed No

particlesw
arm

Global
Optimizat
ion
Toolbox

Yes No Yes Fixed No

nlmefit Statistics
and
Machine
Learning
Toolbox

No No No Mixed No sbiofit
mixed

nlmefitsa Statistics
and
Machine
Learning
Toolbox

No No No Mixed Yes

† This column indicates whether the algorithm allows using parameter sensitivities to
determine gradients of the objective function.

* When using fminsearch, nlinfit, or fminunc with bounds, the objective function
returns Inf if bounds are exceeded. When you turn on options such as FunValCheck, the
optimization may error if bounds are exceeded during estimation. If using nlinfit, it

4 Simulation and Analysis

4-60

may report warnings about the Jacobian being ill-conditioned or not being able to
estimate if the final result is too close to the bounds.

See Also
sbiofit | sbiofitmixed

More About
• “Nonlinear Regression”
• “Nonlinear Mixed-Effects Modeling”

 See Also

4-61

Error Models
SimBiology supports the error models described in the following table. For instance, if
you assume every observation has a constant amount of noise, use the constant error
model, which is the default. Instead, if you assume the error is proportional to the
response data, then the proportional error model might be more appropriate.

Error
Model

Mathematical Representation Standard Deviation of Error Model

consta
nt
(defaul
t)

y = f + aε a

propor
tional

y = f + b f ε b|f|

combi
ned

y = f + (a + b f)ε a+b|f|

expone
ntial

y = f ∗ exp(aε) or equivalently, ea2− 1 * ea

log(y) = log(f) + aε a
Here, y is the response, f is the function value, ɛ is a standard mean-zero and unit-
variance (Gaussian) variable, and a and b are error parameters. For instance, if you
assume the error is approximately 5% of each observation, use the proportional error
model with b = 0.05. In SimBiology, f typically represents the simulation result.

See Also

More About
• “Nonlinear Regression”
• “Nonlinear Mixed-Effects Modeling”

4 Simulation and Analysis

4-62

Progress Plot
The progress plot provides the live feedback on the status of parameter estimation while
using sbiofit, sbiofitmixed, or the Fit Data task in the SimBiology desktop. When
you enable this feature, a new figure opens and shows the fitting quality measures such
as log-likelihood and estimated parameter values for each function iteration. The plot
monitors the progress whether you are running the fit on a local machine or in parallel
using remote clusters.

When you estimate parameters, you can specify which estimation method on page 4-59 to
use during the fitting. The progress plot is shown for all the estimation methods except
for nlinfit. However, the progress plot differs depending on whether you are using a
nonlinear mixed-effects method (nlmefit or nlmefitsa) or a nonlinear regression
method, such as lsqnonlin.

Progress Plot for Nonlinear Mixed-Effects Methods
The progress plot figure contains a series of subplots. Specifically, the subplots show the
values of fixed-effect parameters (theta), the estimates of the variance parameters, that
is, the diagonal elements of the covariance matrix of the random effects (Ψ), and the log-
likelihood.

 Progress Plot

4-63

Here are some tips for interpreting the plots.

• The fitting function tries to maximize the log-likelihood. When the plot begins to
display a flat line, this might indicate that maximization is complete. Try setting the
maximum iterations to a lower number to reduce the number of iterations you need
and improve performance.

• Plots for the fixed effects (thetas) and the variance parameters (Ψs) should show
convergence. If you see oscillations, or jumps without accompanying improvements in
the log-likelihood, the model may be overparameterized. Try the following:

4 Simulation and Analysis

4-64

• Reduce the number of fixed effects.
• Reduce the number of random effects.
• Simplify the covariance matrix pattern of random effects (if you have previously

changed it from the default diagonal matrix).

Progress Plot for Nonlinear Regression Methods
The progress plot figure shows a series of subplots, and there are two categories of plots:
quality measure plots on page 4-65 and estimated parameter plots on page 4-68. For a
pooled fit, that is, estimating one set of parameter values for all groups (or individuals),
there is only one line for each plot and the line is faded when the fit is finished. For an
unpooled fit, that is, estimating one set of parameter values for each group (or individual),
each line represents a single individual or group. You can select one or more lines by
clicking and dragging the mouse cursor to create a rectangle on any plot. All lines that
intersect the rectangle are selected and highlighted across all plots.

You can terminate the fitting at any time by selecting Stop, and partial results are
returned. Specifically, for a pooled fit, the result up to the last function iteration is
returned. For an unpooled fit, results for any groups that have finished running are
returned. The groups currently running are interrupted and partial results from the last
iteration are also returned.

Quality Measure Plots

The quality measure plots include the log-likelihood, first-order optimality, and
termination condition plots. They occupy the first row of the figure.

Log-likelihood

The estimation method tries to maximize the log-likelihood, and the plot shows the log-
likelihood value for each function iteration. When the plot begins to display a flat line, it
often indicates that maximization is complete. Try setting the maximum iterations to a
lower number to reduce the number of iterations you need and improve performance.

For a pooled fit, there is only one line in the plot and the line is faded when the fit
finishes. The log-likelihood plot shows whether the fit converges or fails along with the
information on the estimation method termination condition. The next figure is an
example of the log-likelihood plot of a pooled fit.

 Progress Plot

4-65

First-order Optimality

First-order optimality is a measure of how close a point x is to optimal, and the plot is
shown when you are using the Optimization Toolbox methods (lsqnonlin,
lsqcurvefit, fminunc, and fmincon). The first-order optimality measure must be zero
at a minimum, but a point with first-order optimality equal to zero is not necessarily a
minimum. For details, see First-order optimality (Optimization Toolbox).

Termination Condition

For a pooled fit, the termination condition is displayed together with the log-likelihood
plot. For details about the termination condition, refer to the exitflag output argument
description of the corresponding estimation method. Suppose that you are using the
lsqnonlin method and see a message: The fit converged with criterion
Residual. By checking the exitflag conditions of the lsqnonlin with the keyword
Residual, this termination condition corresponds to the exitflag value of 3, that is,
change in the residual was less than the specified tolerance.

For an unpooled fit, the Termination Conditions plot contains the summary (histogram)
of termination criteria for all groups (or individuals) as shown in the next figure. The y-
axis represents the total number of fits for each termination condition, and the x-axis
displays all the termination criteria.

4 Simulation and Analysis

4-66

Hybrid Functions

If you are performing a hybrid optimization by first running a global solver, such as ga or
particleswarm, followed by a hybrid function, the ProgressPlot also shows the
quality measure plots for the hybrid function in the second row. The following figure is an
example where the global optimization algorithm is ga and the hybrid function is
fminunc. For an illustrated example, see “Parameter Estimation with Hybrid Solvers”.

 Progress Plot

4-67

Estimated Parameter Plot

This plot displays the value of the estimated parameter versus iteration for each group.
One estimated parameter plot is displayed for each parameter. The plots start on the
second row of the figure and can span multiple rows. Each plot displays a horizontal
dashed line for any lower or upper bound you specify for the estimated parameter. The
bound lines show only if the range of the plot can include the lines.

For an unpooled fit, the Progress Plot also displays a histogram that shows the
distribution of the parameter values for the completed runs. Use the toggle button over
the y-axis for each plot to switch between the log and linear scale. The next figure shows
an example of an estimated parameter plot with the bound information and distribution of
estimated values.

4 Simulation and Analysis

4-68

If you have a hierarchical model and are estimating parameters for each category such as
estimating parameters for males versus females, the Progress Plot displays one plot per
estimated parameter for each category. For example, in the next figure, the Central and
Peripheral parameters are estimated for the age categories while Q12 and Cl_Central are
estimated for the sex categories.

 Progress Plot

4-69

Status Bar

For an unpooled fit running in parallel, the Progress Plot displays a status bar in the
bottom right corner. The bar shows information about the remaining and completed
number of individuals (or groups) throughout the fit.

4 Simulation and Analysis

4-70

See Also
sbiofit | sbiofitmixed | sbiofitstatusplot

More About
• “Nonlinear Regression” on page 4-52
• “Nonlinear Mixed-Effects Modeling” on page 4-44
• “Supported Methods for Parameter Estimation” on page 4-59

 See Also

4-71

Fit a One-Compartment Model to an Individual's PK
Profile

Background

This example shows how to fit an individual's PK profile data to one-compartment model
and estimate pharmacokinetic parameters.

Suppose you have drug plasma concentration data from an individual and want to
estimate the volume of the central compartment and the clearance. Assume the drug
concentration versus the time profile follows the monoexponential decline Ct = C0e−ket,
where Ct is the drug concentration at time t, C0 is the initial concentration, and ke is the
elimination rate constant that depends on the clearance and volume of the central
compartment ke = Cl/V.

The synthetic data in this example was generated using the following model and
parameters:

• One-compartment model with bolus dosing and first-order elimination
• Volume of the central compartment (Central) = 1.70 liter
• Clearance parameter (Cl_Central) = 0.55 liter/hour
• Constant error model

Load Data and Visualize

The data is stored as a table with variables Time and Conc that represent the time course
of the plasma concentration of an individual after an intravenous bolus administration
measured at 13 different time points. The variable units for Time and Conc are hour and
milligram/liter, respectively.

clear all
load(fullfile(matlabroot,'examples','simbio','data15.mat'))

plot(data.Time,data.Conc,'b+')
xlabel('Time (hour)');
ylabel('Drug Concentration (milligram/liter)');

4 Simulation and Analysis

4-72

Convert to groupedData Format

Convert the data set to a groupedData object, which is the required data format for the
fitting function sbiofit for later use. A groupedData object also lets you set
independent variable and group variable names (if they exist). Set the units of the Time
and Conc variables. The units are optional and only required for the UnitConversion
feature, which automatically converts matching physical quantities to one consistent unit
system.

gData = groupedData(data);
gData.Properties.VariableUnits = {'hour','milligram/liter'};
gData.Properties

 Fit a One-Compartment Model to an Individual's PK Profile

4-73

ans = struct with fields:
 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {'Time' 'Conc'}
 VariableDescriptions: {}
 VariableUnits: {'hour' 'milligram/liter'}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: [1x1 matlab.tabular.CustomProperties]
 GroupVariableName: ''
 IndependentVariableName: 'Time'

groupedData automatically set the name of the IndependentVariableName property
to the Time variable of the data.

Construct a One-Compartment Model

Use the built-in PK library to construct a one-compartment model with bolus dosing and
first-order elimination where the elimination rate depends on the clearance and volume of
the central compartment. Use the configset object to turn on unit conversion.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Bolus';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

For details on creating compartmental PK models using the SimBiology® built-in library,
see “Create Pharmacokinetic Models” on page 5-22.

Define Dosing

Define a single bolus dose of 10 milligram given at time = 0. For details on setting up
different dosing schedules, see “Doses” on page 2-42.

dose = sbiodose('dose');
dose.TargetName = 'Drug_Central';
dose.StartTime = 0;
dose.Amount = 10;

4 Simulation and Analysis

4-74

dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';

Map Response Data to the Corresponding Model Component

The data contains drug concentration data stored in the Conc variable. This data
corresponds to the Drug_Central species in the model. Therefore, map the data to
Drug_Central as follows.

responseMap = {'Drug_Central = Conc'};

Specify Parameters to Estimate

The parameters to fit in this model are the volume of the central compartment (Central)
and the clearance rate (Cl_Central). In this case, specify log-transformation for these
biological parameters since they are constrained to be positive. The estimatedInfo
object lets you specify parameter transforms, initial values, and parameter bounds if
needed.

paramsToEstimate = {'log(Central)','log(Cl_Central)'};
estimatedParams = estimatedInfo(paramsToEstimate,'InitialValue',[1 1],'Bounds',[1 5;0.5 2]);

Estimate Parameters

Now that you have defined one-compartment model, data to fit, mapped response data,
parameters to estimate, and dosing, use sbiofit to estimate parameters. The default
estimation function that sbiofit uses will change depending on which toolboxes are
available. To see which function was used during fitting, check the
EstimationFunction property of the corresponding results object.

fitConst = sbiofit(model,gData,responseMap,estimatedParams,dose);

Display Estimated Parameters and Plot Results

Notice the parameter estimates were not far off from the true values (1.70 and 0.55) that
were used to generate the data. You may also try different error models to see if they
could further improve the parameter estimates.

fitConst.ParameterEstimates

ans=2×4 table
 Name Estimate StandardError Bounds
 ____________ ________ _____________ __________

 Fit a One-Compartment Model to an Individual's PK Profile

4-75

 'Central' 1.6993 0.034821 1 5
 'Cl_Central' 0.53358 0.01968 0.5 2

s.Labels.XLabel = 'Time (hour)';
s.Labels.YLabel = 'Concentration (milligram/liter)';
plot(fitConst,'AxesStyle',s);

Use Different Error Models

Try three other supported error models (proportional, combination of constant and
proportional error models, and exponential).

fitProp = sbiofit(model,gData,responseMap,estimatedParams,dose,...
 'ErrorModel','proportional');

4 Simulation and Analysis

4-76

fitExp = sbiofit(model,gData,responseMap,estimatedParams,dose,...
 'ErrorModel','exponential');
fitComb = sbiofit(model,gData,responseMap,estimatedParams,dose,...
 'ErrorModel','combined');

Use Weights Instead of an Error Model

You can specify weights as a numeric matrix, where the number of columns corresponds
to the number of responses. Setting all weights to 1 is equivalent to the constant error
model.

weightsNumeric = ones(size(gData.Conc));
fitWeightsNumeric = sbiofit(model,gData,responseMap,estimatedParams,dose,'Weights',weightsNumeric);

Alternatively, you can use a function handle that accepts a vector of predicted response
values and returns a vector of weights. In this example, use a function handle that is
equivalent to the proportional error model.

weightsFunction = @(y) 1./y.^2;
fitWeightsFunction = sbiofit(model,gData,responseMap,estimatedParams,dose,'Weights',weightsFunction);

Compare Information Criteria for Model Selection

Compare the loglikelihood, AIC, and BIC values of each model to see which error model
best fits the data. A larger likelihood value indicates the corresponding model fits the
model better. For AIC and BIC, the smaller values are better.

allResults = [fitConst,fitWeightsNumeric,fitWeightsFunction,fitProp,fitExp,fitComb];
errorModelNames = {'constant error model','equal weights','proportional weights', ...
 'proportional error model','exponential error model',...
 'combined error model'};
LogLikelihood = [allResults.LogLikelihood]';
AIC = [allResults.AIC]';
BIC = [allResults.BIC]';
t = table(LogLikelihood,AIC,BIC);
t.Properties.RowNames = errorModelNames;
t

t=6×3 table
 LogLikelihood AIC BIC
 _____________ _______ _______

 constant error model 3.9866 -3.9732 -2.8433
 equal weights 3.9866 -3.9732 -2.8433
 proportional weights -3.8472 11.694 12.824

 Fit a One-Compartment Model to an Individual's PK Profile

4-77

 proportional error model -3.8257 11.651 12.781
 exponential error model 1.1984 1.6032 2.7331
 combined error model 3.9163 -3.8326 -2.7027

Based on the information criteria, the constant error model (or equal weights) fits the
data best since it has the largest loglikelihood value and the smallest AIC and BIC.

Display Estimated Parameter Values

Show the estimated parameter values of each model.

Estimated_Central = zeros(6,1);
Estimated_Cl_Central = zeros(6,1);
t2 = table(Estimated_Central,Estimated_Cl_Central);
t2.Properties.RowNames = errorModelNames;
for i = 1:height(t2)
 t2{i,1} = allResults(i).ParameterEstimates.Estimate(1);
 t2{i,2} = allResults(i).ParameterEstimates.Estimate(2);
end
t2

t2=6×2 table
 Estimated_Central Estimated_Cl_Central
 _________________ ____________________

 constant error model 1.6993 0.53358
 equal weights 1.6993 0.53358
 proportional weights 1.9045 0.51734
 proportional error model 1.8777 0.51147
 exponential error model 1.7872 0.51701
 combined error model 1.7008 0.53271

Conclusion

This example showed how to estimate PK parameters, namely the volume of the central
compartment and clearance parameter of an individual, by fitting the PK profile data to
one-compartment model. You compared the information criteria of each model and
estimated parameter values of different error models to see which model best explained
the data. Final fitted results suggested both the constant and combined error models
provided the closest estimates to the parameter values used to generate the data.

4 Simulation and Analysis

4-78

However, the constant error model is a better model as indicated by the loglikelihood,
AIC, and BIC information criteria.

See Also
sbiofit

More About
• “Fit a Two-Compartment Model to PK Profiles of Multiple Individuals” on page 4-98
• “Estimate Category-Specific PK Parameters for Multiple Individuals” on page 4-80
• “Nonlinear Regression” on page 4-52

 See Also

4-79

Estimate Category-Specific PK Parameters for Multiple
Individuals

This example shows how to estimate category-specific (such as young versus old, male
versus female), individual-specific, and population-wide parameters using PK profile data
from multiple individuals.

Background

Suppose you have drug plasma concentration data from 30 individuals and want to
estimate pharmacokinetic parameters, namely the volumes of central and peripheral
compartment, the clearance, and intercompartmental clearance. Assume the drug
concentration versus the time profile follows the biexponential decline
Ct = Ae−at + Be−bt, where Ct is the drug concentration at time t, and a and b are slopes
for corresponding exponential declines.

Load Data

This synthetic data contains the time course of plasma concentrations of 30 individuals
after a bolus dose (100 mg) measured at different times for both central and peripheral
compartments. It also contains categorical variables, namely Sex and Age.

clear
load(fullfile(matlabroot,'examples','simbio','sd5_302RAgeSex.mat'))

Convert to groupedData Format

Convert the data set to a groupedData object, which is the required data format for the
fitting function sbiofit. A groupedData object also allows you set independent variable
and group variable names (if they exist). Set the units of the ID, Time, CentralConc,
PeripheralConc, Age, and Sex variables. The units are optional and only required for
the UnitConversion feature, which automatically converts matching physical quantities
to one consistent unit system.

gData = groupedData(data);
gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter','',''};
gData.Properties

ans = struct with fields:
 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}

4 Simulation and Analysis

4-80

 VariableNames: {1x6 cell}
 VariableDescriptions: {}
 VariableUnits: {1x6 cell}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: [1x1 matlab.tabular.CustomProperties]
 GroupVariableName: 'ID'
 IndependentVariableName: 'Time'

The IndependentVariableName and GroupVariableName properties have been
automatically set to the Time and ID variables of the data.

Visualize Data

Display the response data for each individual.

t = sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'},...
 'Marker','+','LineStyle','none');
% Resize the figure.
t.hFig.Position(:) = [100 100 1280 800];

 Estimate Category-Specific PK Parameters for Multiple Individuals

4-81

Set Up a Two-Compartment Model

Use the built-in PK library to construct a two-compartment model with infusion dosing
and first-order elimination where the elimination rate depends on the clearance and
volume of the central compartment. Use the configset object to turn on unit
conversion.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Bolus';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,'Peripheral');
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

4 Simulation and Analysis

4-82

For details on creating compartmental PK models using the SimBiology® built-in library,
see “Create Pharmacokinetic Models” on page 5-22.

Define Dosing

Assume every individual receives a bolus dose of 100 mg at time = 0. For details on
setting up different dosing strategies, see “Doses” on page 2-42.

dose = sbiodose('dose','TargetName','Drug_Central');
dose.StartTime = 0;
dose.Amount = 100;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';

Map the Response Data to Corresponding Model Components

The data contains measured plasma concentration in the central and peripheral
compartments. Map these variables to the appropriate model components, which are
Drug_Central and Drug_Peripheral.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};

Specify Parameters to Estimate

Specify the volumes of central and peripheral compartments Central and Peripheral,
intercompartmental clearance Q12, and clearance Cl_Central as parameters to
estimate. The estimatedInfo object lets you optionally specify parameter transforms,
initial values, and parameter bounds. Since both Central and Peripheral are
constrained to be positive, specify a log-transform for each parameter.

paramsToEstimate = {'log(Central)', 'log(Peripheral)', 'Q12', 'Cl_Central'};
estimatedParam = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);

Estimate Individual-Specific Parameters

Estimate one set of parameters for each individual by setting the 'Pooled' name-value
pair argument to false.

unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);

Display Results

Plot the fitted results versus the original data for each individual (group).

 Estimate Category-Specific PK Parameters for Multiple Individuals

4-83

t = plot(unpooledFit);
% Resize the figure.
t.hFig.Position(:) = [100 100 1280 800];

For an unpooled fit, sbiofit always returns one results object for each individual.

Examine Parameter Estimates for Category Dependencies

Explore the unpooled estimates to see if there is any category-specific parameters, that is,
if some parameters are related to one or more categories. If there are any category
dependencies, it might be possible to reduce the number of degrees of freedom by
estimating just category-specific values for those parameters.

First extract the ID and category values for each ID

catParamValues = unique(gData(:,{'ID','Sex','Age'}));

4 Simulation and Analysis

4-84

Add variables to the table containing each parameter's estimate.

allParamValues = vertcat(unpooledFit.ParameterEstimates);
catParamValues.Central = allParamValues.Estimate(strcmp(allParamValues.Name, 'Central'));
catParamValues.Peripheral = allParamValues.Estimate(strcmp(allParamValues.Name, 'Peripheral'));
catParamValues.Q12 = allParamValues.Estimate(strcmp(allParamValues.Name, 'Q12'));
catParamValues.Cl_Central = allParamValues.Estimate(strcmp(allParamValues.Name, 'Cl_Central'));

Plot estimates of each parameter for each category. gscatter requires Statistics and
Machine Learning Toolbox™. If you do not have it, use other alternative plotting functions
such as plot.

h = figure;
ylabels = {'Central','Peripheral','Cl_Central','Q12'};
plotNumber = 1;
for i = 1:4
 thisParam = estimatedParam(i).Name;

 % Plot for Sex category
 subplot(4,2,plotNumber);
 plotNumber = plotNumber + 1;
 gscatter(double(catParamValues.Sex), catParamValues.(thisParam), catParamValues.Sex);
 ax = gca;
 ax.XTick = [];
 ylabel(ylabels(i));
 legend('Location','bestoutside')
 % Plot for Age category
 subplot(4,2,plotNumber);
 plotNumber = plotNumber + 1;
 gscatter(double(catParamValues.Age), catParamValues.(thisParam), catParamValues.Age);
 ax = gca;
 ax.XTick = [];
 ylabel(ylabels(i));
 legend('Location','bestoutside')
end
% Resize the figure.
h.Position(:) = [100 100 1280 800];

 Estimate Category-Specific PK Parameters for Multiple Individuals

4-85

Based on the plot, it seems that young individuals tend to have higher volumes of central
and peripheral compartments (Central, Peripheral) than old individuals (that is, the
volumes seem to be age-specific). In addition, males tend to have lower clearance rates
(Cl_Central) than females but the opposite for the Q12 parameter (that is, the
clearance and Q12 seem to be sex-specific).

Estimate Category-Specific Parameters

Use the 'CategoryVariableName' property of the estimatedInfo object to specify
which category to use during fitting. Use 'Sex' as the group to fit for the clearance
Cl_Central and Q12 parameters. Use 'Age' as the group to fit for the Central and
Peripheral parameters.

estimatedParam(1).CategoryVariableName = 'Age';
estimatedParam(2).CategoryVariableName = 'Age';
estimatedParam(3).CategoryVariableName = 'Sex';

4 Simulation and Analysis

4-86

estimatedParam(4).CategoryVariableName = 'Sex';
categoryFit = sbiofit(model,gData,responseMap,estimatedParam,dose)

categoryFit =
 OptimResults with properties:

 ExitFlag: 3
 Output: [1x1 struct]
 GroupName: []
 Beta: [8x5 table]
 ParameterEstimates: [120x6 table]
 J: [240x8x2 double]
 COVB: [8x8 double]
 CovarianceMatrix: [8x8 double]
 R: [240x2 double]
 MSE: 0.4362
 SSE: 205.8690
 Weights: []
 LogLikelihood: -477.9195
 AIC: 971.8390
 BIC: 1.0052e+03
 DFE: 472
 DependentFiles: {1x3 cell}
 EstimatedParameterNames: {'Central' 'Peripheral' 'Q12' 'Cl_Central'}
 ErrorModelInfo: [1x3 table]
 EstimationFunction: 'lsqnonlin'

When fitting by category (or group), sbiofit always returns one results object, not one
for each category level. This is because both male and female individuals are considered
to be part of the same optimization using the same error model and error parameters,
similarly for the young and old individuals.

Plot Results

Plot the category-specific estimated results.

t = plot(categoryFit);
% Resize the figure.
t.hFig.Position(:) = [100 100 1280 800];

 Estimate Category-Specific PK Parameters for Multiple Individuals

4-87

For the Cl_Central and Q12 parameters, all males had the same estimates, and
similarly for the females. For the Central and Peripheral parameters, all young
individuals had the same estimates, and similarly for the old individuals.

Estimate Population-Wide Parameters

To better compare the results, fit the model to all of the data pooled together, that is,
estimate one set of parameters for all individuals by setting the 'Pooled' name-value
pair argument to true. The warning message tells you that this option will ignore any
category-specific information (if they exist).

pooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',true);

Warning: CategoryVariableName property of the estimatedInfo object is ignored when using the 'Pooled' option.

4 Simulation and Analysis

4-88

Plot Results

Plot the fitted results versus the original data. Although a separate plot was generated for
each individual, the data was fitted using the same set of parameters (that is, all
individuals had the same fitted line).

t = plot(pooledFit);
% Resize the figure.
t.hFig.Position(:) = [100 100 1280 800];

Compare Residuals

Compare residuals of CentralConc and PeripheralConc responses for each fit.

t = gData.Time;
allResid(:,:,1) = pooledFit.R;

 Estimate Category-Specific PK Parameters for Multiple Individuals

4-89

allResid(:,:,2) = categoryFit.R;
allResid(:,:,3) = vertcat(unpooledFit.R);

h = figure;
responseList = {'CentralConc', 'PeripheralConc'};
for i = 1:2
 subplot(2,1,i);
 oneResid = squeeze(allResid(:,i,:));
 plot(t,oneResid,'o');
 refline(0,0); % A reference line representing a zero residual
 title(sprintf('Residuals (%s)', responseList{i}));
 xlabel('Time');
 ylabel('Residuals');
 legend({'Pooled','Category-Specific','Unpooled'});
end
% Resize the figure.
h.Position(:) = [100 100 1280 800];

4 Simulation and Analysis

4-90

As shown in the plot, the unpooled fit produced the best fit to the data as it fit the data to
each individual. This was expected since it used the most number of degrees of freedom.
The category-fit reduced the number of degrees of freedom by fitting the data to two
categories (sex and age). As a result, the residuals were larger than the unpooled fit, but
still smaller than the population-fit, which estimated just one set of parameters for all
individuals. The category-fit might be a good compromise between the unpooled and
pooled fitting provided that any hierarchical model exists within your data.

See Also
sbiofit

 See Also

4-91

More About
• “Fit a One-Compartment Model to an Individual's PK Profile” on page 4-72
• “Fit a Two-Compartment Model to PK Profiles of Multiple Individuals” on page 4-98
• “Nonlinear Regression” on page 4-52

4 Simulation and Analysis

4-92

Perform Hybrid Optimization Using sbiofit
This example shows how to configure sbiofit to perform a hybrid optimization by first
running the global solver particleswarm, followed by another minimization function,
fmincon.

Load Data

Load the sample data to fit. The data is stored as a table with variables ID, Time,
CentralConc, and PeripheralConc. This synthetic data represents the time course of
plasma concentrations measured at eight different time points for both central and
peripheral compartments after an infusion dose for three individuals.

clear all
load(fullfile(matlabroot,'examples','simbio','data10_32R.mat'))
gData = groupedData(data);
gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter'};
sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'},'Marker','+',...
 'LineStyle','none');

 Perform Hybrid Optimization Using sbiofit

4-93

Create Model

Create a two-compartment model with an infusion dose.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Infusion';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,'Peripheral');
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;
dose = sbiodose('dose','TargetName','Drug_Central');

4 Simulation and Analysis

4-94

dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';
dose.RateUnits = 'milligram/hour';
responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};

Define Parameters to Estimate

Use the estimatedInfo object to define the estimated parameters.

paramsToEstimate = {'log(Central)','log(Peripheral)','Q12','Cl_Central'};
estimatedParam = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1],...
 'Bounds',[0 10]);

Define the Options for Hybrid Optimization

Define the options for the global solver and the hybrid solver. Because the parameters are
bounded, make sure you use a compatible hybrid function for a constrained optimization,
such as fmincon. Use optimset to define the options for fminsearch. Use
optimoptions to define the options for fminunc, patternsearch, and fmincon.

rng('default');
globalMethod = 'particleswarm';
options = optimoptions(globalMethod);
hybridMethod = 'fmincon';
hybridopts = optimoptions(hybridMethod,'Display','none');
options = optimoptions(options,'HybridFcn',{hybridMethod,hybridopts});

Fit Data

Estimate model parameters. Turn on ProgressPlot to see the live feedback on the
status of fitting. The first row of plots are the quality measure plots for the global solver.
The second row plots are for the hybrid function. For details, see “Progress Plot” on page
4-63.

unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,globalMethod,...
 options,'Pooled',false,'ProgressPlot',true);

 Perform Hybrid Optimization Using sbiofit

4-95

Plot Results

plot(unpooledFit);

4 Simulation and Analysis

4-96

See Also
sbiofit

More About
• “Fit a One-Compartment Model to an Individual's PK Profile” on page 4-72
• “Fit a Two-Compartment Model to PK Profiles of Multiple Individuals” on page 4-98
• “Nonlinear Regression” on page 4-52

 See Also

4-97

Fit a Two-Compartment Model to PK Profiles of Multiple
Individuals

This example shows how to estimate pharmacokinetic parameters of multiple individuals
using a two-compartment model.

Suppose you have drug plasma concentration data from three individuals that you want to
use to estimate corresponding pharmacokinetic parameters, namely the volume of central
and peripheral compartment (Central, Peripheral), the clearance rate (Cl_Central),
and intercompartmental clearance (Q12). Assume the drug concentration versus the time
profile follows the biexponential decline Ct = Ae−at + Be−bt, where Ct is the drug
concentration at time t, and a and b are slopes for corresponding exponential declines.

The synthetic data set contains drug plasma concentration data measured in both central
and peripheral compartments. The data was generated using a two-compartment model
with an infusion dose and first-order elimination. These parameters were used for each
individual.

 Central Peripheral Q12 Cl_Central
Individual 1 1.90 0.68 0.24 0.57
Individual 2 2.10 6.05 0.36 0.95
Individual 3 1.70 4.21 0.46 0.95

The data is stored as a table with variables ID, Time, CentralConc, and
PeripheralConc. It represents the time course of plasma concentrations measured at
eight different time points for both central and peripheral compartments after an infusion
dose.

clear all
load(fullfile(matlabroot,'examples','simbio','data10_32R.mat'))

Convert the data set to a groupedData object which is the required data format for the
fitting function sbiofit for later use. A groupedData object also lets you set
independent variable and group variable names (if they exist). Set the units of the ID,
Time, CentralConc, and PeripheralConc variables. The units are optional and only
required for the UnitConversion feature, which automatically converts matching
physical quantities to one consistent unit system.

4 Simulation and Analysis

4-98

gData = groupedData(data);
gData.Properties.VariableUnits = {'','hour','milligram/liter','milligram/liter'};
gData.Properties

ans =

 struct with fields:

 Description: ''
 UserData: []
 DimensionNames: {'Row' 'Variables'}
 VariableNames: {'ID' 'Time' 'CentralConc' 'PeripheralConc'}
 VariableDescriptions: {}
 VariableUnits: {1x4 cell}
 VariableContinuity: []
 RowNames: {}
 CustomProperties: [1x1 matlab.tabular.CustomProperties]
 GroupVariableName: 'ID'
 IndependentVariableName: 'Time'

Create a trellis plot that shows the PK profiles of three individuals.

sbiotrellis(gData,'ID','Time',{'CentralConc','PeripheralConc'},...
 'Marker','+','LineStyle','none');

 Fit a Two-Compartment Model to PK Profiles of Multiple Individuals

4-99

Use the built-in PK library to construct a two-compartment model with infusion dosing
and first-order elimination where the elimination rate depends on the clearance and
volume of the central compartment. Use the configset object to turn on unit conversion.

pkmd = PKModelDesign;
pkc1 = addCompartment(pkmd,'Central');
pkc1.DosingType = 'Infusion';
pkc1.EliminationType = 'linear-clearance';
pkc1.HasResponseVariable = true;
pkc2 = addCompartment(pkmd,'Peripheral');
model = construct(pkmd);
configset = getconfigset(model);
configset.CompileOptions.UnitConversion = true;

4 Simulation and Analysis

4-100

Assume every individual receives an infusion dose at time = 0, with a total infusion
amount of 100 mg at a rate of 50 mg/hour. For details on setting up different dosing
strategies, see “Doses” on page 2-42.

dose = sbiodose('dose','TargetName','Drug_Central');
dose.StartTime = 0;
dose.Amount = 100;
dose.Rate = 50;
dose.AmountUnits = 'milligram';
dose.TimeUnits = 'hour';
dose.RateUnits = 'milligram/hour';

The data contains measured plasma concentrations in the central and peripheral
compartments. Map these variables to the appropriate model species, which are
Drug_Central and Drug_Peripheral.

responseMap = {'Drug_Central = CentralConc','Drug_Peripheral = PeripheralConc'};

The parameters to estimate in this model are the volumes of central and peripheral
compartments (Central and Peripheral), intercompartmental clearance Q12, and
clearance rate Cl_Central. In this case, specify log-transform for Central and
Peripheral since they are constrained to be positive. The estimatedInfo object lets
you specify parameter transforms, initial values, and parameter bounds (optional).

paramsToEstimate = {'log(Central)','log(Peripheral)','Q12','Cl_Central'};
estimatedParam = estimatedInfo(paramsToEstimate,'InitialValue',[1 1 1 1]);

Fit the model to all of the data pooled together, that is, estimate one set of parameters for
all individuals. The default estimation method that sbiofit uses will change depending
on which toolboxes are available. To see which estimation function sbiofit used for the
fitting, check the EstimationFunction property of the corresponding results object.

pooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',true)

pooledFit =

 OptimResults with properties:

 ExitFlag: 3
 Output: [1x1 struct]
 GroupName: []
 Beta: [4x3 table]
 ParameterEstimates: [4x3 table]

 Fit a Two-Compartment Model to PK Profiles of Multiple Individuals

4-101

 J: [24x4x2 double]
 COVB: [4x4 double]
 CovarianceMatrix: [4x4 double]
 R: [24x2 double]
 MSE: 6.6220
 SSE: 291.3688
 Weights: []
 LogLikelihood: -111.3904
 AIC: 230.7808
 BIC: 238.2656
 DFE: 44
 DependentFiles: {1x3 cell}
 EstimatedParameterNames: {'Central' 'Peripheral' 'Q12' 'Cl_Central'}
 ErrorModelInfo: [1x3 table]
 EstimationFunction: 'lsqnonlin'

Plot the fitted results versus the original data. Although three separate plots were
generated, the data was fitted using the same set of parameters (that is, all three
individuals had the same fitted line).

plot(pooledFit);

4 Simulation and Analysis

4-102

Estimate one set of parameters for each individual and see if there is any improvement in
the parameter estimates. In this example, since there are three individuals, three sets of
parameters are estimated.

unpooledFit = sbiofit(model,gData,responseMap,estimatedParam,dose,'Pooled',false);

Plot the fitted results versus the original data. Each individual was fitted differently (that
is, each fitted line is unique to each individual) and each line appeared to fit well to
individual data.

plot(unpooledFit);

 Fit a Two-Compartment Model to PK Profiles of Multiple Individuals

4-103

Display the fitted results of the first individual. The MSE was lower than that of the
pooled fit. This is also true for the other two individuals.

unpooledFit(1)

ans =

 OptimResults with properties:

 ExitFlag: 3
 Output: [1x1 struct]
 GroupName: 1
 Beta: [4x3 table]

4 Simulation and Analysis

4-104

 ParameterEstimates: [4x3 table]
 J: [8x4x2 double]
 COVB: [4x4 double]
 CovarianceMatrix: [4x4 double]
 R: [8x2 double]
 MSE: 2.1380
 SSE: 25.6559
 Weights: []
 LogLikelihood: -26.4805
 AIC: 60.9610
 BIC: 64.0514
 DFE: 12
 DependentFiles: {1x3 cell}
 EstimatedParameterNames: {'Central' 'Peripheral' 'Q12' 'Cl_Central'}
 ErrorModelInfo: [1x3 table]
 EstimationFunction: 'lsqnonlin'

Generate a plot of the residuals over time to compare the pooled and unpooled fit results.
The figure indicates unpooled fit residuals are smaller than those of pooled fit as
expected. In addition to comparing residuals, other rigorous criteria can be used to
compare the fitted results.

t = [gData.Time;gData.Time];
res_pooled = vertcat(pooledFit.R);
res_pooled = res_pooled(:);
res_unpooled = vertcat(unpooledFit.R);
res_unpooled = res_unpooled(:);
plot(t,res_pooled,'o','MarkerFaceColor','w','markerEdgeColor','b')
hold on
plot(t,res_unpooled,'o','MarkerFaceColor','b','markerEdgeColor','b')
refl = refline(0,0); % A reference line representing a zero residual
title('Residuals versus Time');
xlabel('Time');
ylabel('Residuals');
legend({'Pooled','Unpooled'});

 Fit a Two-Compartment Model to PK Profiles of Multiple Individuals

4-105

This example showed how to perform pooled and unpooled estimations using sbiofit.
As illustrated, the unpooled fit accounts for variations due to the specific subjects in the
study, and, in this case, the model fits better to the data. However, the pooled fit returns
population-wide parameters. If you want to estimate population-wide parameters while
considering individual variations, use sbiofitmixed.

See Also
sbiofit

4 Simulation and Analysis

4-106

More About
• “Fit a One-Compartment Model to an Individual's PK Profile” on page 4-72
• “Estimate Category-Specific PK Parameters for Multiple Individuals” on page 4-80
• “Nonlinear Regression” on page 4-52

 See Also

4-107

Estimating the Bioavailability of a Drug
In this example, you will use the parameter estimation capabilities of SimBiology™ to
calculate F, the bioavailability, of the drug ondansetron. You will calculate F by fitting a
model of absorption and excretion of the drug to experimental data tracking drug
concentration over time.

This example requires Optimization Toolbox™.

Background

Most drugs must be absorbed into the bloodstream in order to become active. An
intravenous (IV) administration of a drug is one way to achieve this. However, it is
impractical or impossible in many cases.

When a drug is not given by IV, it follows some other route into the bloodstream, such as
absorption through the mucous membranes of the GI tract or mouth. Drugs administered
through a route other than IV administration are generally not completely absorbed.
Some portion of the drug is directly eliminated and never reaches the bloodstream.

The percentage of drug absorbed is the bioavailability of the drug. Bioavailability is one of
the most important pharmacokinetic properties of a drug. It is useful when calculating
safe dosages for non-IV routes of administration. Bioavailability is calculated relative to
an IV administration. When administered intravenously, a drug has 100% bioavailability.
Other routes of administration tend to reduce the amount of drug that reaches the blood
stream.

Modeling Bioavailability

Bioavailability can be modeled using one of several approaches. In this example, you use
a model with a GI compartment and a blood plasma compartment. Oral administration is
modeled by a dose event in the GI compartment. IV administration is modeled by a dose
event in the blood plasma compartment.

The example models the drug leaving the GI compartment in two ways. The available
fraction of the drug is absorbed into the bloodstream. The remainder is directly
eliminated. The total rate of elimination, ka, is divided into absorption, ka_Central, and
direct elimination, Cl_Oral. The bioavailability, F, connects total elimination with
ka_Central and Cl_Oral via two initial assignment rules.

ka_Central = F*ka
Cl_Oral = (1-F)*ka

4 Simulation and Analysis

4-108

The drug is eliminated from the Blood_Plasma compartment through first-order
kinetics, at a rate determined by the parameter Cl_Central.

Load the project that contains the model m1.

sbioloadproject(fullfile(matlabroot,'examples','simbio','Bioavailability.sbproj'),'m1');

Format of the Data for Estimating Bioavailability

You can estimate bioavailability by comparing intrapatient measurements of drug
concentration under different dosing conditions. For instance, a patient receives an IV
dose on day 1, then receives an oral dose on day 2. On both days, we can measure the
blood plasma concentration of the drug over some period of time.

Such data allow us to estimate the bioavailability, as well as other parameters of the
model. Intrapatient time courses were generated for the drug ondansetron, reported in
[2] and reproduced in [1].

Load the data, which is a table.

load(fullfile(matlabroot,'examples','simbio','ondansetron_data.mat'));

 Estimating the Bioavailability of a Drug

4-109

Convert the data to a groupedData object because the fitting function sbiofit requires
it to be a groupedData object.

gd = groupedData(ondansetron_data);

Display the data.

gd

gd=33×5 table
 Time Drug Group IV Oral
 ________ ______ _____ ___ ____

 0 NaN 1 8 NaN
 0.024358 69.636 1 NaN NaN
 0.087639 58.744 1 NaN NaN
 0.15834 49.824 1 NaN NaN
 0.38895 44.409 1 NaN NaN
 0.78392 40.022 1 NaN NaN
 1.3182 34.522 1 NaN NaN
 1.8518 28.972 1 NaN NaN
 2.4335 25.97 1 NaN NaN
 2.9215 22.898 1 NaN NaN
 3.41 20.75 1 NaN NaN
 3.8744 18.095 1 NaN NaN
 4.9668 13.839 1 NaN NaN
 5.8962 10.876 1 NaN NaN
 7.8717 6.6821 1 NaN NaN
 10.01 4.0166 1 NaN NaN
 ⋮

The data have variables for time, drug concentration, grouping information, IV, and oral
dose amounts. Group 1 contains the data for the IV time course. Group 2 contains the
data for the oral time course. NaN in the Drug column means no measurement was made
at that time. NaN in one of the dosing columns means no dose was given through that
route at that time.

Plot the pharmacokinetic profiles of the oral dose and IV administration.

plot(gd.Time(gd.Group==1),gd.Drug(gd.Group==1),'Marker','+')
hold on
plot(gd.Time(gd.Group==2),gd.Drug(gd.Group==2),'Marker','x')
legend({'8 mg IV','8 mg Oral'})

4 Simulation and Analysis

4-110

xlabel('Time (hour)')
ylabel('Concentration (milligram/liter)')

Notice there is a lag phase in the oral dose of about an hour while the drug is absorbed
from the GI tract into the bloodstream.

Fitting the Data

Estimate the following four parameters of the model:

• Total forward rate out of the dose compartment, ka
• Clearance from the Blood_Plasma compartment, clearance
• Volume of the Blood_Plasma compartment

 Estimating the Bioavailability of a Drug

4-111

• Bioavailability of the orally administered drug, F

Set the initial values of these parameters and specify the log transform for all parameters
using an estimatedInfo object.

init = [1 1 2 .8];
estimated_parameters = estimatedInfo({'log(ka)','log(clearance)',...
 'log(Blood_Plasma)','logit(F)'},'InitialValue',init);

Because ka, clearance, and Blood_Plasma are positive physical quantities, log
transforming reflects the underlying physical constraint and generally improves fitting.
This example uses a logit transform on F because it is a quantity constrained between 0
and 1. The logit transform takes the interval of 0 to 1 and transforms it by taking the log-
odds of F (treating F as a probability). For a few drugs, like theophyline, constraining F
between 0 and 1 is inappropriate because oral bioavailability can be greater than 1 for
drugs with unusual absorption or metabolism mechanisms.

Next, map the response data to the corresponding model component. In the model, the
plasma drug concentration is represented by Blood_Plasma.Drug_Central. The
corresponding concentration data is the Drug variable of the groupedData object gd.

responseMap = {'Blood_Plasma.Drug_Central = Drug'};

Create the dose objects required by sbiofit to handle the dosing information. First,
create the IV dose targeting Drug_Central and the oral dose targeting Dose_Central.

iv_dose = sbiodose('IV','TargetName','Drug_Central');
oral_dose = sbiodose('Oral','TargetName','Drug_Oral');

Use these dose objects as template doses to generate an array of dose objects from the
dosing data variables IV and Oral.

doses_for_fit = createDoses(gd,{'IV','Oral'},'',[iv_dose, oral_dose]);

Estimate parameters using sbiofit.

opts = optimoptions('lsqnonlin','Display','final');
results = sbiofit(m1, gd,responseMap,estimated_parameters,doses_for_fit,...
 'lsqnonlin',opts,[],'pooled',true);

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the value of the function tolerance.

4 Simulation and Analysis

4-112

Interpreting Results

First, check if the fit is successful.

plot(results)

Overall, the results seem to be a good fit. However, they do not capture a distribution
phase over the first hour. It might be possible to improve the fit by adding another
compartment, but more data would be required to justify such an increase in model
complexity.

When satisfied with the model fit, you can draw conclusions about the estimated
parameters. Display the parameters stored in the results object.

 Estimating the Bioavailability of a Drug

4-113

results.ParameterEstimates

ans=4×3 table
 Name Estimate StandardError
 ______________ ________ _____________

 'ka' 0.77947 0.1786
 'clearance' 45.19 2.8674
 'Blood_Plasma' 138.73 4.5249
 'F' 0.64455 0.066013

The parameter F is the bioavailability. The result indicates that ondansetron has
approximately a 64% bioavailability. This estimate in line with the literature reports that
oral administration of ondansetron in the 2-24 milligram range has a 60% bioavailability
[1,2].

Blood_Plasma is the volume of distribution. This result is reasonably close to the 160
liter Vd reported for ondansetron [1]. The estimated clearance is 45.4 L/hr.

ka does not map directly onto a widely reported pharmacokinetic parameter. Consider it
from two perspectives. We can say that 64% of the drug is available, and that the
available drug has an absorption parameter of 0.4905/hr. Or, we can say that drug
clearance from the GI compartment is 0.7402/hr, and 64% of the drug cleared from the GI
tract is absorbed into the bloodstream.

Generalizing This Approach

lsqnonlin, as well as several other optimization algorithms supported by sbiofit, are
local algorithms. Local algorithms are subject to the possibility of finding a result that is
not the best result over all possible parameter choices. Because local algorithms do not
guarantee convergence to the globally best fit, when fitting PK models, restarting the fit
with different initial conditions multiple times is a good practice. Alternatively, sbiofit
supports several global methods, such as particle swarm, or genetic algorithm
optimization. Verifying that a fit is of sufficient quality is an important step before
drawing inferences from the values of the parameters.

This example uses data that was the mean time course of several patients. When fitting a
model with data from more patients, some parameters might be the same between
patients, some not. Such requirements introduce the need for hierarchical modeling. You
can perform hierarchical modeling can by configuring the CategoryVariableName flag
of EstimatedInfo object.

4 Simulation and Analysis

4-114

References

1 Roila, Fausto, and Albano Del Favero. "Ondansetron clinical pharmacokinetics."
Clinical Pharmacokinetics 29.2 (1995): 95-109.

2 Colthup, P. V., and J. L. Palmer. "The determination in plasma and pharmacokinetics of
ondansetron." European Journal of Cancer & Clinical Oncology 25 (1988): S71-4.

See Also
sbiofit

More About
• “Fit a One-Compartment Model to an Individual's PK Profile” on page 4-72
• “Fit a Two-Compartment Model to PK Profiles of Multiple Individuals” on page 4-98
• “Nonlinear Regression” on page 4-52

 See Also

4-115

Accelerating Model Simulations and Analyses
In this section...
“What Is Acceleration?” on page 4-116
“When to Accelerate” on page 4-116
“Prerequisites for Accelerating Simulations and Analyses” on page 4-116
“Accelerate Simulations Programmatically” on page 4-117
“Accelerate Simulations using SimBiology Desktop” on page 4-119
“Troubleshooting Accelerated Simulations” on page 4-119

What Is Acceleration?
Normally, when simulating or analyzing a model in SimBiology, the model is expressed in
MATLAB code. You can accelerate the simulation by converting the model to compiled C
code, which executes faster. Because this compilation step has a small time overhead,
acceleration is not recommended for individual simulations of small models. However, for
large models, or for repeated simulations during analysis, acceleration can provide a
significant speed increase that outweighs the small time overhead.

When to Accelerate
The functionality to accelerate simulations performs optimally under the following
conditions:

• Running repeated simulations with different initial conditions
• Running very long simulations (for example, simulations that take longer than a

minute to run)

Prerequisites for Accelerating Simulations and Analyses
To prepare your models for accelerated simulations, install and set up a compiler:

1 Install a C compiler (if one is not already installed on your system). For a current list
of supported compilers, see Supported and Compatible Compilers.

2 Ensure that any user-defined functions in your model can be used for code generation
from MATLAB, so they can convert to compiled C. For more information, see

4 Simulation and Analysis

4-116

https://www.mathworks.com/support/compilers.html

Language, Function, and Object support for C and C++ code generation (MATLAB
Coder) or contact MathWorks Technical Support.

Note

• On 32-bit Windows platforms, the LCC compiler is automatically installed. However,
for better performance of the acceleration functionality, you may want to install a
supported compiler other than LCC, and it will be selected automatically.

• On 64-bit Windows platforms, if you have not installed another compiler, SimBiology
uses the LCC64 compiler for model accelerations. If you have installed another
supported compiler, it will be selected automatically.

• Microsoft® Visual Studio® 2010 run-time libraries must be available on any computer
running accelerated models generated using Microsoft Windows SDK.

• If you plan to redistribute your accelerated models to other MATLAB users, be sure
they have the same run-time libraries.

Accelerate Simulations Programmatically
Use sbioaccelerate if you are accelerating a SimBiology model. For a SimFunction
object and an exported model (SimBiology.export.Model), use the corresponding
accelerate method.

Using sbioaccelerate

Follow the two-step process for acceleration.

1 Run sbioaccelerate to prepare your model for accelerated simulations. Use the
same input arguments that you plan to use with sbiosimulate in the next step. For
example:

sbioaccelerate(model,configset,doses);

For a very large model, this step may take a minute or longer to complete.
2 Run sbiosimulate with the same input arguments that you used with

sbioaccelerate. For example:

simdata = sbiosimulate(model,configset,doses);

 Accelerating Model Simulations and Analyses

4-117

https://www.mathworks.com/support/contact_us.html?s_tid=doc2cs
https://www.mathworks.com/support/compilers.html

If you pass in an array of doses to sbioaccelerate, you can simulate the model using
any subset of these doses and do not need to run acceleration again.

For illustrated examples, see the following.

• “Prepare a Model for Accelerated Simulation”
• “Accelerate Simulation With Array of Doses”

Using accelerate

A SimFunction object is automatically accelerated at the first function execution. Hence
it is not necessary to accelerate the model before you create the object. However,
manually accelerate using the accelerate method of the object if you want it
accelerated in your deployment applications.

For exported model, see accelerate.

When to Rerun Acceleration

If you make any modifications to the model, such as changes to reactions or adding
events, you need to rerun the acceleration, before running simulations.

However, there are exceptions. You do not need to accelerate again if you are making the
changes to:

• Any variants
• InitialAmount property of species
• Capacity property of compartments
• Value property of parameters
• StopTime property of configset
• OutputTimes property of SolverOptions
• Active, Amount, and Rate properties of ScheduleDose and RepeatDose
• Time property of ScheduleDose
• Interval, RepeatCount, and StartTime properties of RepeatDose
• Notes, Tag, and UserData properties of any applicable objects

4 Simulation and Analysis

4-118

Accelerate Simulations using SimBiology Desktop
Each built-in task in the SimBiology desktop lets you specify a model to analyze, and you
can choose whether to accelerate the model. For details, see “Configuring Model-Related
Settings” on page 1-72.

Troubleshooting Accelerated Simulations
If you have custom functions, use persistent variables only for those (constant) variables
that you do not want to recalculate or reload every function call. The reason is that during
the acceleration process, SimBiology converts the model and custom functions to
compiled C code. If you try to use a persistent variable to share data across generated (or
compiled) C functions, you may have different results. For instance, if you use a persistent
variable to count how many times a function is called, each compiled function will have a
separate count. Those persistent variables in the corresponding compiled functions will
be different from the one used in the MATLAB function that you defined.

If you specify custom functions in SimBiology expressions, you might see the following
warning if your code is not compatible with code generation from MATLAB:

The SimBiology Expression and any user-defined functions
could not be accelerated. Please check that these expressions
and any user-defined functions are supported for code generation
as described in the Code Generation from MATLAB documentation.

where Expression is any of the following:

• Reaction rate/rule expression
• Initial assignment rule expression
• Repeated assignment rule expression
• Event trigger expression
• Event function expression

For more information, see Language, Function, and Object support for C and C++ code
generation (MATLAB Coder) or contact MathWorks Technical Support.

 Accelerating Model Simulations and Analyses

4-119

https://www.mathworks.com/support/contact_us.html

See Also
accelerate | SimBiology.export.Model | SimFunction object | accelerate |
sbioaccelerate

More About
• “SimBiology Desktop”
• “Configuring Tasks” on page 1-72

4 Simulation and Analysis

4-120

Noncompartmental Analysis
Noncompartmental analysis (NCA) lets you compute pharmacokinetic (PK) parameters of
a drug from the time course of measured drug concentrations. This approach does not
require the assumption of a specific compartmental model. NCA is often used to
determine the degree of exposure following administration of a drug, such as AUC, and
other PK parameters, such as the clearance and the terminal half-life.

Data
SimBiology lets you calculate NCA parameters from concentration–time data. The data
must contain a time column, a concentration column, and a dose column that defines dose
amounts. Three types of drug administration routes are supported: IV bolus, IV infusion,
and Extravascular. You can have a column for each type. For infusion doses, an infusion
rate column is also needed.

If you have data containing multiple groups of observations, you can define a group
column. If needed, you can use two levels of hierarchy to specify grouping. Specify the
outer level of grouping using the group column, and specify the inner level (subgroups) in
the ID column. Consider data that contains three groups, where each group contains four
patients. The group column labels the three groups, and the ID column labels each
patient.

Dosing
Single-dosing data contains a single dose amount for each individual. Multiple-dosing
data has several doses at different times for each individual. There are common
parameters calculated for either type of dosing data, and parameters that are specific to
single or multiple dosing.

Common Parameters for Single and Multiple Dosing

SimBiology computes some common parameters for single- or multiple-dosing data. This
figure represents the concentration-time profile after a single dose. For multiple dosing,
the same principles apply, except that SimBiology uses the first period, that is, after the
first dose and before the second.

 Noncompartmental Analysis

4-121

Figure A shows concentration–time data in a linear scale and illustrates how the AUC
from time 0 to infinity is calculated. Figure B shows the same data in a semilogarithmic
scale. To compute the terminal rate constant (Lambda_z), SimBiology performs a set of
linear regressions of the log-transformed data using each of the last n points (n = 3, 4,
5, ...) from the terminal portion of the curve. Lambda_z is chosen from the regression
that uses the most points and has the maximum adjusted_R2.

This table describes the common parameters for single and multiple dosing.

Paramete
r

Description

AUC_0_las
t

Area under the measured concentration–time curve from time = 0 to the last
time point.

AUC_0_last = ∫
0

Tlast
C(t)dt,

where C(t) is the plasma concentration at time t.

SimBiology uses the linear trapezoidal method (MATLAB) to calculate the
AUC.

4 Simulation and Analysis

4-122

Paramete
r

Description

AUC_infini
ty

Total area under the concentration–time curve extrapolating to Inf using the
terminal rate constant Lambda_z.

AUC_inf inity = AUC_0_last + C_last
Lambda_z ,

where C_last is the last observed concentration and Lambda_z is the terminal
rate constant.

AUC_infini
ty_dose AUC_inf inity_dose = AUC_inf inity

DM .

AUCx_y Partial AUC computed for a custom time range, where x and y are the start
and end times, respectively.

AUC_extra
p_percent

Fraction of total AUC_infinity obtained from extrapolation.

AUC_extrap_percent = AUC_inf inity − AUC_0_last
AUC_inf inity * 100.

Lambda_z To calculate the terminal rate constant (Lambda_z), SimBiology performs a
set of linear regressions of the log(concentration)–time data using each of
the last n points (n = 3, 4, 5, ...) from the terminal portion of the
curve, that is, points satisfying the conditions: Time ≥ Tmax & Conc ≤ Cmax .
A minimum of three points is required to determine Lambda_z.

Lambda_z is chosen from the regression that uses the most points and has
the maximum adjusted_R2 among all regressions.

ad justed_R2 = 1 − (1 − R2) * (n− 1)
n− 2

R2 Coefficient of determination for the linear regressions used in the
Lambda_z calculation.

Num_poin
ts

Number of data points from the profile used in the determination of
Lambda_z.

 Noncompartmental Analysis

4-123

Paramete
r

Description

CL Total drug clearance.

Cl = DM
AUC_inf inity ,

where DM is the dose amount.
C_0 Extrapolated concentration at time = 0, computed using a regression of the

first two data points in a profile. This parameter is for IV Bolus doses only.
C_max Maximum observed concentration.
C_max_Do
se C_max_Dose = C_max

DM .

C_max_x_
y

Maximum observed concentration within a given time range, specified by the
start time x and the end time y. This parameter is computed when you
specify a custom time range in the Cmax Time Range box in the SimBiology
desktop or set the C_max_ranges property of the options object created by
sbioncaoptions.

MRT Mean residence time.

MRT = AUMC
AUC_inf inity .

Tlast Time of the last observed concentration value above the lower limit of
quantization (LOQ).

T_half Terminal half-life of the drug.

T_half = ln(2)
Lambda_z .

T_max T_max is the time point at which the maximum concentration (C_max) is
observed.

T_max_x_y Time point at which maximum concentration is observed within a given time
range, specified by the start time x and the end time y. This parameter is
computed when you specify a custom time range in the Cmax Time Range
box in the SimBiology desktop or set the C_max_ranges property of the
options object created by sbioncaoptions.

4 Simulation and Analysis

4-124

Paramete
r

Description

V_ss Apparent volume of distribution at equilibrium. This parameter is for IV
Bolus doses only.

V_ss = DM * AUMC
AUC_inf inity2 .

V_z Volume of distribution during the terminal phase.

V_z = DM
AUC_inf inity * Lambda_z .

DM Administered dose amount. For multiple dosing, the last administered dose is
reported.

doseSched
ule

Single- or multiple-dosing data.

administra
tionRoute

Dose administration route. Supported routes are IVBolus, IVInfusion,
ExtraVascular.

Parameters for Single Dosing

In addition to the common parameters, SimBiology reports parameters for single-dosing
data.

Paramete
r

Description

AUMC_0_l
ast

Area under the first moment of the concentration–time curve from time 0 to
the last time point Tlast.

AUMC_0_last = ∫
0

Tlast
t * C(t)dt.

AUMC Total area under the first moment of the concentration–time curve
extrapolating to Inf using Lambda_z.

AUMC = AUMC_0_last + C_last
Lambda_z2 + Tlast * C_last

Lambda_z .

 Noncompartmental Analysis

4-125

Paramete
r

Description

AUMC_ext
rap_perce
nt

Fraction of total AUMC obtained from extrapolation.

AUMC_extrap_percent = AUMC− AUMC_0_last
AUMC * 100.

Parameters for Multiple Dosing

This figure shows the concentration-time profile after multiple doses. SimBiology uses the
first period, that is, after the first dose and before the second, to compute the following
NCA parameters for multiple-dosing data, in addition to the common parameters listed
previously.

4 Simulation and Analysis

4-126

Paramete
r

Description

AUC_Tau Area under the concentration–time curve during a dosing period of length
Tau. SimBiology uses the first period, that is, after the first dose and before
the second.

AUC_Tau =∫T_ f irst_period
T_ f irst_period + Tau

C(t)dt.

Tau Dosing interval.
C_Avg Average concentration over one period.

C_Avg = AUC_Tau
Tau .

C_min Minimum observed concentration during the first period, that is, C_min =
C(T_min).

PTF_perce
nt

Peak trough fluctuation over one dosing interval at steady state.

PTF_Percent = C_max − C_min
C_Avg * 100.

Accumulat
ion_Index

Theoretical accumulation ratio.

Accumulation_Index = 1
1 − e−Lambda_z * Tau .

T_min Time at which the minimum concentration is reached in a dosing interval.

Sparse Sampling

To calculate PK parameters, measured concentrations at multiple time points for each
individual is needed after the drug administration. Under certain circumstances, it is not
feasible or not practical to obtain such longitudinal data on a single subject. In such
cases, concentration data is collected from multiple individuals at each time point and
then averaged to calculate NCA parameters for each group instead. SimBiology performs
such sparse sampling by taking the average of the dependent variable for all individuals
at the same time point. It then returns the values of NCA parameters for each group.
Time values for each measurement across individuals (IDs) within a group must be
identical.

 Noncompartmental Analysis

4-127

Calculating NCA Parameters
You can calculate NCA parameters using the sbionca function in the command line or
using the SimBiology desktop.

Using sbionca

sbionca provides command line functionality to compute NCA parameters. Define the
data classification options and parameter calculation options using an option object
created by sbioncaoptions. For an example, see “Compute NCA Parameters from
Concentration-Time Data”.

Using SimBiology Desktop

After you import the data, select Open > NCA on the Define Plot tab. If your data has a
grouping column, specify it using Group Data Column. Use ID Data Column to specify
the inner level of grouping. For details, see “Data” on page 4-121. Specify the dosing data
column (IV Bolus Dose Data Column or Extravascular Dose Data Column, or both if
you have two columns for both types). Lower limit of quantization (LOQ) is a threshold
below which the values of dependent variables are truncated to zero.

Lambda Time Range lets you specify a custom time range to compute the terminal rate
constant (Lambda_z). The time range applies to all groups; you cannot specify a different
time range for each group.

Partial AUC lets you specify a custom time range to compute the partial AUC bounded by
the start and end times. You can specify a different time range for each group.

Cmax Time Range lets you specify a custom time range to report the maximum
observed concentration within the range (C_max) and the time (T_max) when it is
observed. You can specify a different time range for each group.

To export the calculated statistics, select Export Statistics from the context menu of the
NCA table. By default, the data is exported as a table (MATLAB). To convert it to a
dataset, use table2dataset.

See Also
sbionca | sbioncaoptions

4 Simulation and Analysis

4-128

More About
• “SimBiology Desktop”
• “Import Data from a NONMEM-Format File Using the SimBiology Desktop” on page

5-15

 See Also

4-129

Stochastic Simulation of Radioactive Decay
This example shows how to build and simulate a model using the SSA stochastic solver.

The following model will be constructed and stochastically simulated:

• Reaction 1: x -> z with a first-order reaction rate, c = 0.5.
• Initial conditions: x = 1000 molecules, z = 0.

This model can also be used to represent irreversible isomerization.

This example uses parameters and conditions as described in Daniel T. Gillespie, 1977,
"Exact Stochastic Simulation of Coupled Chemical Reactions," The Journal of Physical
Chemistry, vol. 81, no. 25, pp. 2340-2361.

Read the Radioactive Decay Model Saved in SBML Format

SBML = Systems Biology Markup Language, www.sbml.org

model = sbmlimport('radiodecay.xml')

 SimBiology Model - RadioactiveDecay

 Model Components:
 Compartments: 1
 Events: 0
 Parameters: 1
 Reactions: 1
 Rules: 0
 Species: 2

View Species Objects of the Model

model.Species

 SimBiology Species Array

 Index: Compartment: Name: InitialAmount: InitialAmountUnits:
 1 unnamed x 1000 molecule
 2 unnamed z 0 molecule

View Reaction Objects of the Model

model.Reactions

4 Simulation and Analysis

4-130

http://www.sbml.org/

 SimBiology Reaction Array

 Index: Reaction:
 1 x -> z

View Parameter Objects for the Kinetic Law

model.Reactions(1).KineticLaw(1).Parameters

 SimBiology Parameter Array

 Index: Name: Value: ValueUnits:
 1 c 0.5 1/second

Update the Reaction to use MassAction Kinetic Law for Stochastic Solvers.

model.Reactions(1).KineticLaw(1).KineticLawName = 'MassAction';
model.Reactions(1).KineticLaw(1).ParameterVariableNames = {'c'};

Simulate the Model Using the Stochastic (SSA) Solver & Plot

cs = getconfigset(model,'active');
cs.SolverType = 'ssa';
cs.StopTime = 14.0;
cs.CompileOptions.DimensionalAnalysis = false;
[t,X] = sbiosimulate(model);

plot(t,X);
legend('x', 'z', 'AutoUpdate', 'off');
title('Stochastic Radioactive Decay Simulation');
ylabel('Number of molecules');
xlabel('Time (seconds)');

 Stochastic Simulation of Radioactive Decay

4-131

Repeat the Simulation to Show Run-to-Run Variability

title('Multiple Stochastic Radioactive Decay Simulations');
hold on;
for loop = 1:20
 [t,X] = sbiosimulate(model);
 plot(t,X); % Just plot number of reactant molecules
 drawnow;
end

4 Simulation and Analysis

4-132

Overlay the Reaction's ODE Solution in Red

cs = getconfigset(model,'active');
cs.SolverType = 'sundials';
cs.StopTime = 20;
[t,X] = sbiosimulate(model);
plot(t,X,'red');
hold off;

 Stochastic Simulation of Radioactive Decay

4-133

4 Simulation and Analysis

4-134

Pharmacokinetic Modeling

• “Pharmacokinetic Modeling Functionality” on page 5-2
• “Importing Data — Supported Files and Data Types” on page 5-6
• “Importing Data” on page 5-12
• “Import Data from a NONMEM-Format File Using the SimBiology Desktop”

on page 5-15
• “Create Pharmacokinetic Models” on page 5-22
• “Perform Data Fitting with PKPD Models” on page 5-34

5

Pharmacokinetic Modeling Functionality
In this section...
“Overview” on page 5-2
“How SimBiology Supports Pharmacokinetic Modeling” on page 5-2
“Pharmacokinetic Modeling Examples” on page 5-4
“Acknowledgements: Tobramycin Data Set” on page 5-4

Overview
SimBiology software extends the MATLAB computing environment for analyzing
pharmacokinetic (PK) data using models. The software lets you do the following:

• Create models — Use a model construction wizard. Alternatively, extend any model
with pharmacodynamic (PD) model components, or build higher fidelity models. See
“Model” on page 5-3 for more information.

• Fit data — Fit nonlinear, mixed-effects models to data, and estimate the fixed and
random effects, or fit the data using nonlinear least squares. For more information, see
“Analyze Data Using Models” on page 5-3.

• Generate diagnostic plots — For more information, see “Analyze Data Using Models”
on page 5-3.

The software lets you work with different model structures, thus letting you try multiple
models to see which one produces the best results.

How SimBiology Supports Pharmacokinetic Modeling
Import and Work with Data

You can import tabular data into the SimBiology desktop or the MATLAB Workspace. The
supported file types are .xls, .csv, and .txt. You can specify that the data is in a
NONMEM formatted file. The import process interprets the columns according to the
NONMEM definitions. For details, see “Importing Data” on page 5-12.

From the SimBiology desktop, you can filter the raw data to suppress outliers, visualize
data using common plots (such as plot, semilog, scatter, or stairs), and perform
basic statistical analysis. You also can use functions to process and visualize the data at

5 Pharmacokinetic Modeling

5-2

the command line. For an example on importing NONMEM data, see “Import Data from a
NONMEM-Format File Using the SimBiology Desktop” on page 5-15.

Model

SimBiology provides an extensible modeling environment. You can do any of the
following:

• Create a PK model using a model construction wizard to specify the number of
compartments, the route of administration, and the type of elimination.

• Extend any model with pharmacodynamic (PD) model components, or build higher
fidelity models.

• Build or load your own SimBiology, or SBML model.

For more information, see “What is a Model?” on page 2-2.

Analyze Data Using Models

Perform both individual and population fits to grouped longitudinal data:

• Individual fit — Fit data using nonlinear least-squares method, specify parameter
transformations, estimate parameters, and calculate residuals and the estimated
coefficient covariance matrix. For a command line workflow, see “Fitting Workflow for
sbiofit” on page 4-57. For the SimBiology desktop, see “Fit Data” on page 1-73.

• Population fit — Fit data, specify parameter transformations, and estimate the fixed
effects and the random sources of variation on parameters using nonlinear mixed-
effects models. For a command line workflow, see “Nonlinear Mixed-Effects Modeling
Workflow” on page 4-46. For the desktop, see “Fit Data” on page 1-73.

• Population fit using a stochastic algorithm — Fit data, specify parameter
transformations, and estimate the fixed effects and the random sources of variation on
parameters, using the Stochastic Approximation Expectation-Maximization (SAEM)
algorithm. SAEM is more robust with respect to starting values. This functionality
relaxes assumption of constant error variance. Specify nlmefitsa as the estimation
function name when you run sbiofitmixed or in the Fit Data task of the desktop.

In addition, you can turn on the ProgressPlot on page 4-63 option to get the live feedback
on the status of parameter estimation.

 Pharmacokinetic Modeling Functionality

5-3

Pharmacokinetic Modeling Examples
The following examples show how to estimate pharmacokinetic parameters at the
command line.

• “Modeling the Population Pharmacokinetics of Phenobarbital in Neonates”
• “Fit a One-Compartment Model to an Individual's PK Profile” on page 4-72
• “Fit a Two-Compartment Model to PK Profiles of Multiple Individuals” on page 4-98
• “Estimate Category-Specific PK Parameters for Multiple Individuals” on page 4-80
• “Perform Hybrid Optimization Using sbiofit” on page 4-93

For a desktop example, see “Estimate Pharmacokinetic Parameters Using SimBiology
Desktop”.

Acknowledgements: Tobramycin Data Set
Acknowledgements for data in the tobramycin.txt file are located in the /matlab/
toolbox/simbio/simbiodemos folder. Data set is provided by Dr. Leon Aarons
(laarons@fs1.pa.man.ac.uk).

The data in the tobramycin.txt file were downloaded from the Web site of the
Resource Facility for Population Kinetics http://depts.washington.edu/rfpk/
service/datasets/index.html (no longer active). Funding source: NIH/NIBIB grant
P41-EB01975.

The original data set was modified as follows:

• Header comments were removed.
• The file was converted to a tab-delimited format.
• Missing values in the HT column were denoted with "." instead of 100000000.000.

References
[1] Original Publication: Aarons L, Vozeh S, Wenk M, Weiss P, and Follath F. “Population

pharmacokinetics of tobramycin.” Br J Clin Pharmacol. 1989 Sep;28(3):305–14.

5 Pharmacokinetic Modeling

5-4

See Also
sbiofit | sbiofitmixed

More About
• “Nonlinear Regression”
• “Nonlinear Mixed-Effects Modeling”

 See Also

5-5

Importing Data — Supported Files and Data Types

In this section...
“Supported Files and Data Types” on page 5-6
“Support for Importing NONMEM Formatted Files” on page 5-6
“Creating a Data File with SimBiology Definitions” on page 5-11

Supported Files and Data Types
You can import tabular data to the SimBiology desktop or to the MATLAB Workspace. The
supported file types are Excel files (.xls, .xlsx), text files (.csv, .txt), and SAS XPORT files
(.xpt). You can also specify that the data is in a NONMEM formatted file. The import
process interprets the columns according to the NONMEM definitions. For more
information see “Support for Importing NONMEM Formatted Files” on page 5-6.

From the SimBiology desktop, you can filter the raw data to suppress outliers, visualize
data using common plots (such as plot, semilog, scatter, or stairs), and perform
basic statistical analysis. You also can use functions to process and visualize the data at
the command line.

Note If your data set contains dosing information that is infusion data, the data set must
contain the rate and not an infusion duration.

Unit Conversion

Regardless of whether unit conversion functionality is on or off, dosing in the data file
must be expressed in amounts (or as amount/time for infusion rate). By default Unit
Conversion is off, so you must ensure that units for the data are consistent with each
other. If you want to turn on unit conversion, see “Unit Conversion for Imported Data” on
page 5-32 .

Support for Importing NONMEM Formatted Files
You can specify that the data is in a NONMEM formatted file. The following table
highlights the interpretation of this data in SimBiology software.

5 Pharmacokinetic Modeling

5-6

Column Header Interpretation
ID Text (character vector), numeric, or categorical values that

identify the record or group. The import process assumes
that contiguous data with the same value contains data
from one individual. If the data contains non-contiguous
references to the same value, the import process assigns
the second ID encountered an indexed valued derived from
the group first encountered. For example, if the ID columns
contains [1 1 1 2 2 2 1 1 1], the IDs assigned are 1,
2, 1_1.

TIME Monotonically increasing positive values within each
group, indicating time of observation or dose or text
(character vector). The data file can specify clock (2:30 as
a character vector) or decimal values (6.25). The import
process assigns a value of 0 to the first TIME value in the
data file. The import process assigns subsequent values
relative to the first value.

The following table is an example of how the import
process interprets the clock values as decimal values.

Original Clock Values Imported Values
10:00 0
10:30 0.5
11 1
12:30 2.5

If the data file also contains a DATE column, the import
process uses it with the TIME column in calculating the
relative TIME values. The column cannot contain Inf.

 Importing Data — Supported Files and Data Types

5-7

Column Header Interpretation
DATE, DAT1, DAT2, or DAT3 Defines the day of the observation or the dose. The column

can contain the month as a number (9) or a character
vector (Sep). Specify date in the following formats:

• DATE — The column can specify month/day/year or
month-day-year. If you specify two numbers, the
import process assumes they are month and day. You
can use either / or - as a separator.

• DAT1 — The column can specify day/month/year or
day-month-year. If you specify two numbers, the
import process assumes they are day and month.

• DAT2 — The column can specify year/month/day or
year-month-day. If you specify two numbers, the
import process assumes they are month and day.

• DAT3 — The column can specify year/day/month or
year-day-month. If you specify two numbers, the
import process assumes they are day and month.

Note

• If you specify only one number, the import process
assumes it is the day.

• You can omit the year or specify 1, 2, 3, or 4 digits. If
you specify two-digit years, it is assumed to be in the
1900s.

• If the data has the DAT1, DAT2, or DAT3 column, set the
DateLabel property of a NMFileDef object
accordingly using sbionmfiledef. Then specify the
object as the second input argument when you run
sbionmimport.

DV Numeric value of an observation. Column cannot contain
Inf or –Inf.

5 Pharmacokinetic Modeling

5-8

Column Header Interpretation
MDV Defines whether a row describes an observation:

• Row contains 0 — Observation event
• Row contains 1 — Not an observation event

EVID Defines the type of event described for the row in the
record:

• 0 — Observation event; row contains an observed value.
• 1 — Dose event; row describes a dose.
• 2 — Other event; row describes some other event such

as measurement of a covariate.

If a column contains values for dose, but EVID is not 1, the
import process ignores the value. You see a warning and
the value is ignored.

If EVID is set to 2, then only those specified row data are
imported as covariate data. However, if you have an EVID
column as well as one or more covariate columns, but do
not specify a value of 2 anywhere in the EVID column, then
SimBiology imports all the row data as covariate values.

The import process does not support values 3 and 4. You
see a warning and the value is ignored.

 Importing Data — Supported Files and Data Types

5-9

Column Header Interpretation
CMT Indicates which compartment is used for observation value

or for dose received. The interpretation also depends on
EVID:

• Observation event (EVID = 0) — CMT column indicates
which compartment was used for observation value.

• Dose Event (EVID = 1) — CMT column indicates which
compartment received the dose.

Note SimBiology numbers compartments starting with 1,
while NONMEM numbers them starting with 0. For
instance, if a NONMEM data file contains doses and
measurements for CMT = 0, SimBiology generates data
columns named Dose1 and Response1 respectively.

AMT Positive number indicating dose. 0 or NaN specifies no dose
administered. The column cannot contain Inf.

RATE Positive number indicating rate of infusion. 0 specifies an
infinite rate (equivalent to a bolus dose), and NaN specifies
no rate. The column cannot contain Inf.

II Positive number defining the time between doses.
ADDL When the data specifies a number of identical serial doses

at specific intervals (defined by II), ADDL specifies the
number of doses in the series excluding the initial dose. If
the data specifies II but not ADDL, then SimBiology
assumes that the dosing occurs for the duration of that
data record.

Unsupported NONMEM Definitions

The import process does not support (and therefore ignores) the rows containing the
following values or definitions:

• EVID values 3 and 4
• SS column for specifying steady state doses
• PCMT column to define whether to compute a prediction for the row

5 Pharmacokinetic Modeling

5-10

• CALL column for calling the ERROR or the PK subroutine
• If rate is specified as being less than zero, it is assumed to be zero

Creating a Data File with SimBiology Definitions
If you are creating a file containing population data that you want to later import into
SimBiology, create the data file with the following columns:

• Group column — Specify text, numeric, or categorical values. The rows in the file that
have the same Group column value are for the same individual.

• Time column — Specify monotonically increasing positive values within each group
that define the time of the dose, observation and/or covariate measurements.

• Zero or more dosing columns — Create one dosing column for each compartment
being dosed. In each column, specify positive values representing doses in amount
that are added to a species. Use 0 or NaN to specify that no dose was applied at the
specified time. This is useful for times when an observation was recorded but no dose
was applied.

• Zero, or more rate columns — Specify positive values. Zero specifies an infinite rate
and NaN specifies that no rate applies. The rate column is associated with a dosing
column and defines the rate at which the dose is administered.

• Zero or more observation columns — Specify numeric values or NaNs. You can only
specify one observation value at a particular time for each group. NaN values define
that no observation was recorded at the specified time. This is useful for times when a
dose was applied but no observation was recorded.

• Zero or more covariate columns — Specify numeric values or NaNs. Each value defines
the covariate value at the specified time. NaN values define that no covariate
observation was recorded at the specified time.

If you set an EVID value of 2 for some rows, then SimBiology imports only those rows
as covariate data. If you do not mention an EVID value of 2 anywhere and have one or
more covariate columns, then SimBiology imports all the row data as covariate data.

 Importing Data — Supported Files and Data Types

5-11

Importing Data
In this section...
“Import Data from Files” on page 5-12
“Importing Data from NONMEM-Formatted Files” on page 5-13
“Other Resources for Importing Data” on page 5-14

Import Data from Files
Use the dataset function to import tabular data with named columns into an array that
you can use in fitting and analysis at the command line. Use this function when you want
to import the data without NONMEM interpretation of column headers. The dataset
function lets you specify parameter/value pair arguments in which you can specify options
such as the type of delimiter, and whether the first row contains header names. For more
information, see dataset.

To prepare the data file for import, remove any comments that are present at the
beginning of the file.

Examples:

% text files
data = dataset('file', 'tobramycin.txt')
% text files with . in place of missing values
data = dataset('file', 'tobramycin.txt', 'TreatAsEmpty', '.')

% For Excel files
data = dataset('xlsfile', 'tobramycin.xls')

You can also construct the dataset array from variables in the MATLAB Workspace.

% Create a 10x2 array
x = rand(10,2);
% Construct a dataset array containing x
data = dataset({x(:, 1), 'Column1'}, {x(:,2), 'Column2'})

If you import the data as separate variables containing doubles, you can construct the
dataset array by concatenating the variables.

% Create 2 10x1 vectors
x = rand(10,1);

5 Pharmacokinetic Modeling

5-12

y = rand(10,1);
% Construct a dataset array containing x and y
data = dataset({x, 'Column1'}, {y, 'Column2'})

After you finish analyzing your data, you can export any new variables in the MATLAB
Workspace to a variety of file formats.

Importing Data from NONMEM-Formatted Files
Use the sbionmimport function to import data from NONMEM formatted files. To import
the data without NONMEM interpretation of column headers, see “Import Data from
Files” on page 5-12.

To prepare the data file for import, remove any comments that are present at the
beginning of the file and select one of the following methods to import your data:

• If the data file contains only the column header values shown in “Support for
Importing NONMEM Formatted Files” on page 5-6, use the syntax shown in the
following example:

filename = 'C:\work\datafiles\dose.xls';
ds = sbionmimport(filename);

• If the data file has column header labels different from the table shown in “Support for
Importing NONMEM Formatted Files” on page 5-6 and you want to apply NONMEM
interpretation of headers:

1 Create a NONMEM file definition object. This object lets you define what the
column headers in the data file mean in SimBiology. In the following example, the
column containing response values is CP, whereas in NONMEM formatted files
the column is labelled DV.

To use the tobramycin data set [1] on page 5-4, create a NONMEM file definition
object and define the following:

def = sbionmfiledef;
def.DoseLabel = 'DOSE';
def.GroupLabel = 'ID';
def.TimeLabel = 'TIME';
def.DependentVariableLabel = 'CP';
def.MissingDependentVariableLabel = 'MDV';
def.EventIDLabel = 'EVID';
def.ContinuousCovariateLabels = {'WT', 'HT', 'AGE', 'SEX', 'CLCR'};

 Importing Data

5-13

Your file can contain any name for column headings. See sbionmfiledef for the
list of properties you can configure in the NONMEM file definition object.

2 Use the sbionmimport function to import your data file with the column header
definitions as specified in the NONMEM file definition object. For example,
browse to matlabroot/toolbox/simbio/simbiodemos/ (where matlabroot
is the folder where MATLAB is installed).

[data, pkDataObject] = sbionmimport('tobramycin.txt', def, ...
 'TreatAsEmpty', '.');

This example shows you how to obtain the PKData object, PKDataObj, while
importing, since you will use the PKData object in fitting the model later.

The sbionmimport function accepts property-name-value pairs accepted by
dataset. For example, if the data set does not contain column headers, use
'ReadVarNames', false to specify that sbionmimport should read values
from the first row of the file.

For information about creating a model to fit the data, see “Create a Pharmacokinetic
Model Using the Command Line” on page 5-24.

Other Resources for Importing Data
For detailed information about supported data formats and the functions for importing
data into the MATLAB Workspace, see the “Methods for Importing Data” (MATLAB).

You also can import data using the MATLAB Import Wizard (see “Import Images, Audio,
and Video Interactively” (MATLAB). Use the Import Wizard, to import data as text files
(such as .txt and .dat), MAT-files, and spreadsheet files, (such as .xls).

The MATLAB Import Wizard processes the data source. The wizard recognizes data
delimiters, as well as row or column headers, to facilitate the process of data selection
and importation into the MATLAB Workspace. You can import the data to the SimBiology
desktop from the MATLAB Workspace.

5 Pharmacokinetic Modeling

5-14

Import Data from a NONMEM-Format File Using the
SimBiology Desktop

This example shows how to import data from a NONMEM-format file. The data can be in
one of the following supported file formats: .XLSX, .XLS, .CSV, and .TXT.

Load Sample Data

Before importing NONMEM-format data from a file, remove any comments that are
present at the beginning of the file.

Open the SimBiology desktop by typing simbiology in the MATLAB Command Window
or clicking SimBiology on the Apps tab.

On the Home tab, select Add Data > Load Data from File.

Navigate to the folder matlabroot\help\toolbox\simbio\examples, where
matlabroot is the folder where MATLAB is installed. Open a sample NONMEM-format
file named nonmem_bolus_dosing.txt. This file contains synthetically generated data
for 20 individuals receiving 5 bolus doses, with 1 bolus dose every 8 hours. Drug plasma
concentrations were recorded at half-hour intervals for 60 hours.

Note If you use a Macintosh system, press Command+Shift+G in the File Browser
dialog box, and enter the full path to the folder.

Configure NONMEM Data Settings

From the Text File Import dialog box, select Use NONMEM interpretation of
headers.

The CID column heading corresponds to each subject (or group) in the data set. Select
group to identify the column as a group column, and click Update Preview.

 Import Data from a NONMEM-Format File Using the SimBiology Desktop

5-15

5 Pharmacokinetic Modeling

5-16

Note The import dialog box maps NONMEM column headings to appropriate data
classification categories for SimBiology to interpret the data. If there is any ambiguity, a
warning message appears at the bottom of the window.

Click OK to load the data. SimBiology generates a scatter plot of time versus response for
all individuals.

 Import Data from a NONMEM-Format File Using the SimBiology Desktop

5-17

View Raw Data

Click the Raw Data tab at the bottom of the plot to view the data in table form. You can
assign appropriate units using the drop-down list under each column.

5 Pharmacokinetic Modeling

5-18

Define Plot Settings

Display the data with separate axes for each individual. Go back to the Figure 1 tab. On
the Define Plot tab, in the Grouping section, select separate axes instead of one axes.
SimBiology generates separate axes for all individuals.

 Import Data from a NONMEM-Format File Using the SimBiology Desktop

5-19

Noncompartmental Analysis Parameters

SimBiology lets you use concentration-time data to calculate noncompartmental analysis
(NCA) parameters including AUC, clearance, and terminal half life. For details, see NCA
on page 4-121.

To view NCA parameters for each group (individual), select Open > NCA. In the Group
Data Column, select CID. Optionally, if your data has two levels of group hierarchy, you
can use the ID Data Column to specify the subgroup level. For details, see “Data” on
page 4-121.

After you change the parameter settings, SimBiology updates the estimated NCA
parameters for each individual in the Table of NCA Parameters. You can also choose
which columns (parameters) to display by right-clicking any column header and selecting
the column names from the drop-down list.

5 Pharmacokinetic Modeling

5-20

You can export the parameters as a table or separate variables to the MATLAB
workspace. Right-click anywhere inside the table and select the Export Statistics option.

See Also

More About
• “Support for Importing NONMEM Formatted Files” on page 5-6
• “Noncompartmental Analysis” on page 4-121

 See Also

5-21

Create Pharmacokinetic Models
In this section...
“Ways to Create or Import Pharmacokinetic Model” on page 5-22
“How SimBiology Models Represent Pharmacokinetic Models” on page 5-22
“Create a Pharmacokinetic Model Using the Command Line” on page 5-24
“Dosing Types” on page 5-26
“Elimination Types” on page 5-29
“Intercompartmental Clearance” on page 5-31
“Unit Conversion for Imported Data” on page 5-32

Ways to Create or Import Pharmacokinetic Model

To start modeling, you can:

• Create a PK model using a model construction wizard that lets you specify the number
of compartments, the route of administration, and the type of elimination.

• Extend any model to build higher fidelity models.
• Build or load your own model. Load a SimBiology project or SBML model.

How SimBiology Models Represent Pharmacokinetic Models
The following figure compares a model as typically represented in pharmacokinetics with
the same model shown in the SimBiology model diagram. For this comparison, assume
that you are modeling administration of a drug using a two-compartment model with any
dosing input and linear elimination kinetics. (The model structure remains the same with
any dosing type.)

5 Pharmacokinetic Modeling

5-22

Note the following:

• SimBiology represents the concentration or amount of a drug in a given compartment
or volume by a species object contained within the compartment.

• SimBiology represents the exchange or flow of the drug between compartments and
the elimination of the drug by reactions.

• SimBiology represents intercompartmental clearance by a parameter (Q) which
specifies the clearance between the compartments.

• SimBiology drives the dosing schedule with a combination of species (Drug and/or
Dose) and reactions (Dose -> Drug), depending on whether the administration into
the compartment follows bolus, zero-order, infusion, or first-order dosing kinetics. For
more information on the components added and parameters estimated, see “Dosing
Types” on page 5-26.

You can also view this model as a regression function, y = f(k,u), where y is the
predicted value, given values of an input u, and parameter values k. In SimBiology the
model represents f, and the model is used to generate a regression function if y, k, and u
are identified in the model.

 Create Pharmacokinetic Models

5-23

Create a Pharmacokinetic Model Using the Command Line
To create a PK model with the specified number of compartments, dosing type, and
method of elimination:

1 Create a PKModelDesign object. The PKModelDesign object lets you specify the
number of compartments, route of administration, and method of elimination, which
SimBiology uses to construct the model object with the necessary compartments,
species, reactions, and rules.

pkm = PKModelDesign;
2 Add a compartment specifying the compartment name, and optionally, the type of

dosing, and the method of elimination. Also specify whether the data contains a
response variable measured in this compartment and whether the dose(s) have time
lags. For example, if using the tobramycin data set [1] on page 5-4, specify a
compartment named Central, with Bolus for the DosingType property, linear-
clearance for the EliminationType property, and true for the
HasResponseVariable property.

pkc1 = addCompartment(pkm, 'Central', 'DosingType', 'Bolus', ...
 'EliminationType', 'linear-clearance', ...
 'HasResponseVariable', true);

For a description of other DosingType and EliminationType property values, see
“Dosing Types” on page 5-26 and “Elimination Types” on page 5-29.

For a description of the HasResponseVariable property, see
HasResponseVariable. At least one compartment in a model must have a response.
Although SimBiology supports multiple responses per compartment, when adding
compartments to a PKModelDesign object, you are limited to one response per
compartment.

Note To add a compartment that has a time lag associated with any dose that targets
it, set the HasLag property to true:

pkc_lag = addCompartment(pkm, 'Central', 'DosingType', 'Bolus', ...
 'EliminationType', 'linear-clearance', ...
 'HasResponseVariable', true, 'HasLag', true);

Or after adding a compartment, set its HasLag property to true:

pkc1.HasLag = true;

5 Pharmacokinetic Modeling

5-24

3 Optionally, add a second compartment named Peripheral, with no dosing, no
elimination, and no time lag. Set the HasResponseVariable property to true. If
you are using the tobramycin data set [1] on page 5-4, skip this step and use only one
compartment.

pkc2 = addCompartment(pkm, 'Peripheral', 'HasResponseVariable', true);

The model construction process adds the necessary parameters, including a
parameter representing intercompartmental clearance Q. You can add more
compartments by repeating this step. The addition of each compartment creates a
chain of compartments in the order of compartment addition, with a bidirectional
flow of the drug between compartments in the model.

Use the handle to the compartment (pkc1 or pkc2), to change compartment
properties.

4 Construct a SimBiology model object.

[modelObj, PKModelMapObj] = pkm.construct

The construct method returns a SimBiology model object (modelObj) and a
PKModelMap object (PKModelMapObj) that contains the mapping of the model
components to the elements of the regression function.

Note If you change the PKModelDesign object, you must create a new model object
using the construct method. Changes to the PKModelDesign do not automatically
propagate to a previously constructed model object.

5 Perform parameter fitting as shown in “Perform Data Fitting with PKPD Models” on
page 5-34.

The model object and the PKModelMap object are input arguments for the sbionlmefit,
sbionlmefitsa and sbionlinfit functions used in parameter fitting.

For information on ... See ...
Dosing types “Dosing Types” on page 5-26
Elimination types “Elimination Types” on page 5-29
Parameter fitting “Perform Data Fitting with PKPD Models” on page

5-34

 Create Pharmacokinetic Models

5-25

For information on ... See ...
Simulating the model and a
description of configuration sets

“Model Simulation” on page 4-3

Dosing Types
When creating models, SimBiology creates the following model components for each
compartment in the model, regardless of the dosing type:

• Two species (Drug_CompartmentName and Dose_CompartmentName) for each
compartment.

• A reaction (Dose_CompartmentName -> Drug_CompartmentName) for each
compartment, governed by mass action kinetics.

• A parameter (ka_CompartmentName) for each compartment, representing the
absorption rate of the drug when absorption follows first-order kinetics. This is the
forward rate parameter for the Dose_CompartmentName ->
Drug_CompartmentName reaction.

• A parameter (Tk0_CompartmentName) for each compartment, representing the
duration of drug absorption when absorption follows zero-order kinetics.

• A parameter (TLag_CompartmentName) for each compartment, representing the time
lag for any dose that targets that compartment and also that is specified as having a
time lag.

For dosing types that have a fixed infusion or absorption duration (infusion and zero-
order), you can use overlapping doses. The doses are additive.

The following table describes the dosing types, the default parameters to estimate, and
lists the model components created and used for dosing.

Dosing Type Description SimBiology Model
Components Used

Default Parameters
to Estimate

''(empty
character
vector)

No dose The species
(Drug_CompartmentName) in
each compartment

None

5 Pharmacokinetic Modeling

5-26

Dosing Type Description SimBiology Model
Components Used

Default Parameters
to Estimate

SimBiology
desktop —
bolus

Command line
— Bolus

Assumes that the drug
amount is increased
instantly at the dose time.

In the SimBiology model,
the initial concentration
of the drug is based on
dose amount and volume
of the compartment
containing the drug.

The species
(Drug_CompartmentName) in
each compartment

None

SimBiology
desktop —
infusion

Command line
— Infusion

Assumes that the infused
drug amount increases at
a constant known
absorption (or infusion)
rate over a known
duration.

The imported data set
must contain the rate and
not an infusion duration.
SimBiology uses this
information to change the
species concentration at
the constant rate over the
duration specified in the
data set.

The species
(Drug_CompartmentName) in
each compartment

None

SimBiology
desktop —
zero-order

Command line
— ZeroOrder

Assumes that the drug is
added at a constant rate
over fixed, but unknown
duration.

• The species
Drug_CompartmentName in
each compartment

• The parameter
(Tk0_CompartmentName) in
each compartment that has
zero-order dosing. This
parameter represents the
duration of drug absorption

Tk0_CompartmentN
ame (absorption
duration)

 Create Pharmacokinetic Models

5-27

Dosing Type Description SimBiology Model
Components Used

Default Parameters
to Estimate

SimBiology
desktop —
first-order

Command line
— FirstOrder

Assumes that the rate at
which the drug is
absorbed is not constant.

In the SimBiology model,
absorption rate is
assumed to be governed
by mass-action kinetics.

• A species
(Dose_CompartmentName)
representing the dose
amount before it is absorbed

• A species
(Drug_CompartmentName)
for each compartment

• A parameter
(ka_CompartmentName)
representing the absorption
rate of the drug

• A MassAction reaction
(Dose_CompartmentName
—>
Drug_CompartmentName)
with forward rate parameter
(ka_CompartmentName)

ka_CompartmentNa
me (absorption rate)

5 Pharmacokinetic Modeling

5-28

Elimination Types
Elimination Type Description SimBiology Model

Components Created
Default Parameters to
Estimate

SimBiology desktop
— Linear
{Elimination
Rate, Volume}

Command line —
'linear'

Assumes simple
mass-action kinetics
in the elimination of
the drug. In the
SimBiology model,
elimination is
specified by mass-
action kinetics with
the elimination rate
constant specified by
the forward rate
parameter (ke).

• A parameter
representing the
elimination rate
(ke_CompartmentNam
e)

• A MassAction
reaction (drug —>
null) with forward
rate parameter
(ke_CompartmentNam
e) specific to the
compartment

• Compartment volume

(Capacity property)
• Elimination rate

constant
(ke_CompartmentNa
me)

• Inter-compartmental
clearance (Q) when
there is more than
one compartment.

See
“Intercompartmental
Clearance” on page
5-31.

 Create Pharmacokinetic Models

5-29

Elimination Type Description SimBiology Model
Components Created

Default Parameters to
Estimate

SimBiology desktop
— Linear
{Clearance,
Volume}

Command line —
'linear-
clearance'

Assumes simple
mass-action kinetics
in the elimination of
the drug. In the
SimBiology model,
similar to Linear
{Elimination
Rate, Volume}.
But, in addition, this
option lets you
specify the model in
terms of clearance
(Cl) where, Cl = ke
* volume).

• A parameter
representing the
clearance
(Cl_CompartmentNam
e)

• A parameter
representing the
elimination rate
constant
(ke_CompartmentNam
e)

• An
InitialAssignment
rule that initializes
ke_CompartmentName
based on the initial
values for
Cl_CompartmentName
and compartment
volume

• A MassAction
reaction (drug —>
null) with forward
rate parameter
(ke_CompartmentNam
e)

• Compartment volume

(Capacity property)
• Clearance

(Cl_CompartmentNa
me)

• Inter-compartmental
clearance (Q) when
there is more than
one compartment.

See
“Intercompartmental
Clearance” on page
5-31.

5 Pharmacokinetic Modeling

5-30

Elimination Type Description SimBiology Model
Components Created

Default Parameters to
Estimate

SimBiology desktop
— Enzymatic
(Michaelis-
Menten)

Command line —
'enzymatic'

Assumes that
elimination is
governed by
Michaelis-Menten
kinetics.

• Parameter representing
the Michaelis constant,
(Km_CompartmentNam
e)

• A parameter for
maximum velocity
(Vm_CompartmentNam
e

• A reaction with
Michaelis-Menten
kinetics (drug ->
null), with kinetic law
parameters
Vm_CompartmentName
and
Km_CompartmentName

• Compartment volume

(Capacity property)
• Parameter

(Km_CompartmentNa
me)

• Parameter
(Vm_CompartmentNa
me)

• Inter-compartmental
clearance (Q) when
there is more than
one compartment.

See
“Intercompartmental
Clearance” on page
5-31

Intercompartmental Clearance
The compartments created when you generate a SimBiology model form a chain and each
pair of linked compartments are connected by a transport reaction similar to linear
elimination. The addition of two compartments, C1 and C2, generates a reversible mass-
action reaction C1.Drug_C1 <-> C2.Drug. The forward rate parameter is the
compartmental clearance, Q12, divided by the volume of C1. The reverse rate parameter is
Q12, divided by the volume of C2.

The process of adding each pair of compartments in the chain Cm and Cn generates the
following model components:

• A parameter Qmn representing the compartmental clearance between those two
compartments. This parameter is added to the list of parameters to be estimated
(Estimated property of PKModelMap object).

• A parameter (kmn) representing the rate of transfer of the drug from Cm to Cn, where
kmn = Qmn/Vm.

 Create Pharmacokinetic Models

5-31

• A parameter (knm) representing the rate of Cn to Cm, where knm = Qmn/Vn.
• A reversible mass-action reaction between the two compartments, Cm.Drug_Cm <->

Cn.Drug_Cn, with forward rate parameter kmn, and reverse rate parameter knm.
• An initial assignment rule that initializes the value of the parameter kmn, based on the

initial values for Cm and Qmn.
• An initial assignment rule that initializes the value of the parameter knm, based on the

initial values for Cn and Qmn.

Unit Conversion for Imported Data
Unit conversion converts the matching physical quantities to one consistent unit system
in order to resolve them. This conversion is in preparation for correct simulation, but
SimBiology returns the physical quantities in the model in units that you specify.

Regardless of whether unit conversion is on or off, you must express dosing data in
amount. By default, Unit Conversion is off, so you must ensure that units for the data
and the model are consistent with one another.

If Unit Conversion is on, you must specify units. If using the SimBiology desktop, specify
units in the Raw Data tab, when data is selected in the Project Explorer. If using the
command line, specify units in the PKData object.

Parameters in the model have default units. If unit conversion is on, you can change the
units as long as the dimensions are consistent. These default units, which you might use
to specify the values for the initial guess, are as follows.

Physical Quantity or Model Parameter Unit
Central or peripheral compartment volume
(Central or Peripheral)

liter

First-order elimination rate (ke) 1/second
Michaelis constant (Km) milligram/liter
Maximum reaction-velocity, Michaelis-
Menten kinetics (Vm)

milligram/second

Clearance (Cl) liter/second
Absorption duration (Tk0) second
Absorption rate (ka) 1/second

5 Pharmacokinetic Modeling

5-32

Use the configuration settings options to turn unit conversion on or off. For details, see
“Model Simulation” on page 4-3.

For details on dimensional analysis for reaction rates, see “How Reaction Rates Are
Evaluated” on page 2-14.

 Create Pharmacokinetic Models

5-33

Perform Data Fitting with PKPD Models
SimBiology lets you estimate model parameters by fitting the model to experimental time-
course data, using either nonlinear regression or mixed-effects (NLME) techniques. You
can perform both individual and population fits to grouped data.

• Individual fit — Fit data using nonlinear regression (least-squares) methods, specify
parameter transformations, estimate parameters, and calculate residuals and the
estimated coefficient covariance matrix. For a command line workflow, see “Fitting
Workflow for sbiofit” on page 4-57. For the SimBiology desktop, see “Fit Data” on page
1-73.

• Population fit — Fit data, specify parameter transformations, and estimate the fixed
effects and the random sources of variation on parameters using nonlinear mixed-
effects models. For a command line workflow, see “Nonlinear Mixed-Effects Modeling
Workflow” on page 4-46. For the desktop, see “Fit Data” on page 1-73.

• Population fit using a stochastic algorithm — Fit data, specify parameter
transformations, and estimate the fixed effects and the random sources of variation on
parameters, using the Stochastic Approximation Expectation-Maximization (SAEM)
algorithm. SAEM is more robust with respect to starting values. This functionality
relaxes assumption of constant error variance. Specify nlmefitsa as the estimation
function name when you run sbiofitmixed or in the Fit Data task of the desktop.

In addition, you can turn on the ProgressPlot on page 4-63 option to get the live feedback
on the status of parameter estimation.

See Also
sbiofit | sbiofitmixed

More About
• “Nonlinear Regression” on page 4-52
• “Nonlinear Mixed-Effects Modeling” on page 4-44
• “Configuring Tasks” on page 1-72

5 Pharmacokinetic Modeling

5-34

Creating Reaction Rates

A

Define Reaction Rates with Mass Action Kinetics
Use mass action kinetics to define zero-order, first-order, second-order, and reversible
reactions.

Definition of Mass Action Kinetics
Mass action describes the behavior of reactants and products in an elementary chemical
reaction. Mass action kinetics describes this behavior as an equation where the velocity
or rate of a chemical reaction is directly proportional to the concentration of the
reactants.

Zero-Order Reactions
With a zero-order reaction, the reaction rate does not depend on the concentration of
reactants. Examples of zero-order reactions are synthesis from a null species, and
modeling a source species that is added to the system at a specified rate.

 reaction: null -> P
reaction rate: k mole/second
 species: P = 0 mole
 parameters: k = 1 mole/second

Note When specifying a null species, the reaction rate must be defined in units of
amount per unit time not concentration per unit time.

Entering the reaction above into the software and simulating produces the following
result:

A Define Reaction Rates with Mass Action Kinetics

A-2

Zero-Order Mass Action Kinetics

Note If the amount of a reactant with zero-order kinetics reaches zero before the end of
a simulation, then the amount of reactant can go below zero regardless of the solver or
tolerances you set.

First-Order Reactions
With a first-order reaction, the reaction rate is proportional to the concentration of a
single reactant. An example of a first-order reaction is radioactive decay.

 reaction: R -> P
reaction rate: k*R mole/(liter*second)
 species: R = 10 mole/liter
 P = 0 mole/liter
 parameters: k = 1 1/second

Entering the reaction above into the software and simulating produces the following
results:

 Define Reaction Rates with Mass Action Kinetics

A-3

First-Order Mass Action Kinetics

Second-Order Reactions
A second-order reaction has a reaction rate that is proportional to the square or the
concentration of a single reactant or proportional to two reactants. Notice the space
between the reactant coefficient and the name of the reactant. Without the space, 2R
would be considered the name of a species.

 reaction: 2 R -> P
reaction rate: k*R^2 mole/(liter*second)
 species: R = 10 mole/liter
 P = 0 mole/liter
 parameters: k = 1 liter/(mole*second)

Entering the reaction above into the software and simulating produces the following
results:

A Define Reaction Rates with Mass Action Kinetics

A-4

Second-Order Kinetics with Single Reactant

With two reactants, the reaction rate depends on the concentration of two of the
reactants.

 reaction: R1 + R2 -> P
reaction rate: k*R1*R2 mole/(liter*second)
 species: R1 = 10 mole/liter
 R2 = 8 mole/liter
 P = 0 mole/liter
 parameters: k = 1 liter/(mole*second)

Enter the reaction above into the software and simulating produces the following results.
There is a difference in the final values because the initial amount of one of the reactants
is lower than the other. After the first reactant is used up, the reaction stops.

 Define Reaction Rates with Mass Action Kinetics

A-5

Second-Order Kinetics with Two Reactants

Reversible Mass Action
You can model reversible reactions with two separate reactions or with one reaction. With
a single reversible reaction, the reaction rates for the forward and reverse reactions are
combined into one expression. Notice the angle brackets before and after the hyphen to
represent a reversible reaction.

 reaction: R <-> P
reaction rate: kf*R - kr*P mole/(liter*second)
 species: R = 10 mole/liter
 P = 0 mole/liter
 parameters: kf = 1 1/second
 kr = 0.2 1/second

Entering the reaction above into the software and simulating produces the following
results. At equilibrium when the rate of the forward reaction equals the reverse reaction,
v = kf*R - kr*P = 0 and P/R = kf/kr.

A Define Reaction Rates with Mass Action Kinetics

A-6

 Define Reaction Rates with Mass Action Kinetics

A-7

Define Reaction Rates with Enzyme Kinetics
Use differential equations, mass action kinetics, or Michaelis-Menten kinetics to define
enzyme reactions.

Simple Model for Single Substrate Catalyzed Reactions
A simple model for enzyme-catalyzed reactions starts a substrate S reversibly binding
with an enzyme E. Some of the substrate in the substrate/enzyme complex is converted to
product P with the release of the enzyme.

S + E
k1r

k1
 ES

k2
 E + P

v1 = k1[S][E], v1r = k1r[ES], v2 = k2[ES]

This simple model can be defined with

• Differential rate equations. See “Enzyme Reactions with Differential Rate Equations”
on page A-8.

• Reactions with mass action kinetics. See “Enzyme Reactions with Mass Action
Kinetics” on page A-10.

• Reactions with Henri-Michaelis-Menten kinetics. See “Enzyme Reactions with
Irreversible Henri-Michaelis-Menten Kinetics” on page A-11.

Enzyme Reactions with Differential Rate Equations
The reactions for a single-substrate enzyme reaction mechanism (see “Simple Model for
Single Substrate Catalyzed Reactions” on page A-8) can be described with differential
rate equations. You can enter the differential rate equations into the software as rate
rules.

 reactions: none
 reaction rate: none
 rate rules: dS/dt = k1r*ES - k1*S*E
 dE/dt = k1r*ES + k2*ES - k1*S*E
 dES/dt = k1*S*E - k1r*ES - k2*ES
 dP/dt = k2*ES
 species: S = 8 mole
 E = 4 mole
 ES = 0 mole

A Define Reaction Rates with Enzyme Kinetics

A-8

 P = 0 mole
 parameters: k1 = 2 1/(mole*second)
 k1r = 1 1/second
 k2 = 1.5 1/second

Remember that the rate rule dS/dt = f(x) is written in a SimBiology rate rule
expression as S = f(x). For more information about rate rules see “Rate Rules” on page
2-19.

Alternatively, you could remove the rate rule for ES, add a new species Etotal for the
total amount of enzyme, and add an algebraic rule 0 = Etotal - E - ES, where the
initial amounts for Etotal and E are equal.

 reactions: none
 reaction rate: none
 rate rules: dS/dt = k1r*ES - k1*S*E
 dE/dt = k1r*ES + k2*ES - k1*S*E
 dP/dt = k2*ES
 algebraic rule: 0 = Etotal - E - ES
 species: S = 8 mole
 E = 4 mole
 ES = 0 mole
 P = 0 mole

 Define Reaction Rates with Enzyme Kinetics

A-9

 Etotal = 4 mole
 parameters: k1 = 2 1/(mole*second)
 k1r = 1 1/second
 k2 = 1.5 1/second

Enzyme Reactions with Mass Action Kinetics
Determining the differential rate equations for the reactions in a model is a time-
consuming process. A better way is to enter the reactions for a single substrate enzyme
reaction mechanism directly into the software. The following example using models an
enzyme catalyzed reaction with mass action kinetics. For a description of the reaction
model, see “Simple Model for Single Substrate Catalyzed Reactions” on page A-8.

 reaction: S + E -> ES
reaction rate: k1*S*E (binding)

 reaction: ES -> S + E
reaction rate: k1r*ES (unbinding)

 reaction: ES -> E + P
reaction rate: k2*ES (transformation)
 species: S = 8 mole
 E = 4 mole
 ES = 0 mole
 P = 0 mole
 parameters: k1 = 2 1/(mole*second)
 k1r = 1 1/second
 k2 = 1.5 1/second

The results for a simulation using reactions are identical to the results from using
differential rate equations.

A Define Reaction Rates with Enzyme Kinetics

A-10

Enzyme Reactions with Irreversible Henri-Michaelis-Menten
Kinetics
Representing an enzyme-catalyzed reaction with mass action kinetics requires you to
know the rate constants k1, k1r, and k2. However, these rate constants are rarely
reported in the literature. It is more common to give the rate constants for Henri-
Michaelis-Menten kinetics with the maximum velocity Vm=k2*E and the constant Km =
(k1r + k2)/k1. The reaction rate for a single substrate enzyme reaction using Henri-
Michaelis-Menten kinetics is given below. For information about the model, see “Simple
Model for Single Substrate Catalyzed Reactions” on page A-8.

v = Vmax[S]
Km + [S]

The following example models an enzyme catalyzed reaction using Henri-Michaelis-
Menten kinetics with a single reaction and reaction rate equation. Enter the reaction
defined below into the software and simulate.

 reaction: S -> P
reaction rate: Vmax*S/(Km + S)
 species: S = 8 mole

 Define Reaction Rates with Enzyme Kinetics

A-11

 P = 0 mole
 parameters: Vmax = 6 mole/second
 Km = 1.25 mole

The results show a plot slightly different from the plot using mass action kinetics. The
differences are due to assumptions made when deriving the Michaelis-Menten rate
equation.

A Define Reaction Rates with Enzyme Kinetics

A-12

Models Used in Examples

B

Minimal Cascade Model for a Mitotic Oscillator
Albert Goldbeter modified a model with enzyme cascades [Goldbeter and Koshland 1981
on page B-16] to fit cell cycle data from studies with embryonic cells [Goldbeter 1991 on
page B-16]. He used this model to demonstrate thresholds with enzyme cascades and
periodic behavior caused by negative feedback.

There are two SimBiology model variations using Goldbeter's model. The first model uses
the differential rate equations directly from Goldbeter's paper. The second model is built
with reactions using Henri-Michaelis-Menten kinetics.

In this section...
“Goldbeter Model” on page B-2
“SimBiology Model with Rate Rules” on page B-5
“SimBiology Model with Reactions” on page B-7
“References” on page B-16

Goldbeter Model
• “About the Goldbeter Model” on page B-2
• “Reaction Descriptions and Model Assumptions” on page B-3
• “Mathematical Model” on page B-4

About the Goldbeter Model

Albert Goldbeter created a simple cell division model from studies with embryonic cells
[Goldbeter 1991 on page B-16]. This model demonstrates thresholds with enzyme
cascades and periodic behavior caused by negative feedback.

There are six species in Goldbeter's minimal mitotic oscillator model [Goldbeter 1991 on
page B-16].

• C — Cyclin. The periodic behavior of cyclin activates and deactivates an enzyme
cascade.

• M+, M — Inactive (phosphorylated) and active forms of cdc2 kinase. Kinases catalyze
the addition of phosphate groups onto amino acid residues.

• X+, X — Inactive and active (phosphorylated) forms of a cyclin protease. Proteases
degrade proteins by breaking peptide bonds.

B Minimal Cascade Model for a Mitotic Oscillator

B-2

The reactions are labeled r1 to r7 on the following diagram.

This model shows:

• How thresholds with cdc2 kinase activation (M+ -> M) and protease activation (X+ ->
X) can occur as the result of covalent modification (for example, phosphorylation or
dephosphorylation), but without the need for positive feedback.

• How periodic behavior with cdc2 kinase activation can occur with negative feedback
and the time delay associated with activation/deactivation enzyme cascades.

Reaction Descriptions and Model Assumptions

The following list describes each of the reactions in Goldbeter's minimal mitotic oscillator
with some of the simplifying assumptions. For a more detailed explanation of the model,
see [Goldbeter 1991 on page B-16].

• Cyclin (C) is synthesized at a constant rate (r1) and degraded at a constant rate (r2).
• Cyclin (C) does not complex with cdc2 kinase (M).
• Cyclin (C) activates cdc2 kinase (M+ -> M) by increasing the velocity of the

phosphatase that activates the kinase. Inactive cdc2 kinase (M+) is activated by
removing inhibiting phosphate groups (r4).

• The amount of deactivating kinase (not modeled) for the cdc2 kinase (M) is constant.
Active cdc2 kinase (M) is deactivated by adding inhibiting phosphate group (r5).

 Minimal Cascade Model for a Mitotic Oscillator

B-3

• The activation of cyclin protease (X+ -> X) by the active cdc2 kinase (M) is direct
without other intervening cascades. Cyclin protease (X) is activated by adding
phosphate groups (r6).

• The amount of deactivating phosphatase (not modeled) for the cyclin protease (X) is
constant. Active cyclin protease (X) is deactivated by removing the activating
phosphate groups (r7).

• The three species of interest are cyclin (C), active dephosphorylated cdc2 kinase (M),
and active phosphorylated protease (X). The total amounts of (M + M+) and (X + X+)
are constant.

Mathematical Model

Goldbeter's minimal mitotic oscillator model is defined with three differential rate
equations and two algebraic equations that define changing parameters in the rate
equations.

Differential Rate Equation 1, Cyclin (C)

The following differential rate equation is from [Goldbeter 1991 on page B-16] for cyclin
(C).

dC
dt = vi− vdX C

Kd + C − kdC

Differential Rate Equation 2, Kinase (M)

The following differential rate equation is for cdc2 kinase (M). Notice that (1 - M) is the
amount of inactive (phosphorylated) cdc2 kinase (M+).

dM
dt = V1

(1 −M)
K1 + (1 −M) − V2

M
K2 + M

V1 =
VM1[C]
Kc + [C]

Differential Rate Equation 3, Protease (X)

Differential rate equations for cyclin protease (X). Notice that (1 - X) is the amount of
inactive (unphosphorylated) cyclin protease (X+).

dX
dt = V3

(1 − X)
K3 + (1 − X) − V4

X
K4 + X

B Minimal Cascade Model for a Mitotic Oscillator

B-4

V3 = VM3[M]

SimBiology Model with Rate Rules
• “SimBiology Model with Rules” on page B-5
• “SimBiology Simulation with Rules” on page B-6

SimBiology Model with Rules

In the literature, many biological models are defined using differential rate and algebraic
equations. With SimBiology software, you can enter the equations directly as SBML rules.
The example in this section uses Goldbeter's mitotic oscillator to illustrate this point.

Writing differential rate equations in an unambiguous format that a software program can
understand is a fairly simple process.

• Use an asterisk to indicate multiplication. For example, k[a] is written k*a.
• Remove square brackets that indicate concentration from around species. The units

associated with the species will indicate concentration (moles/liter) or amount
(moles, molecules).

SimBiology software uses square brackets around species and parameter name to
allow names that are not valid MATLAB variable names. For example, you could have a
species named glucose-6-phosphate dehydrogenase but you need to add
brackets around the name in reaction rate and rule equations.

• Use parentheses to clarify the order of evaluation for mathematical operations. For
example, do not write a Henri-Michaelis-Menten rate as Vm*C/Kd + C, because Vm*C
is divided by Kd before adding C, and then C is added to the result.

The following equation is the rate rule for “Differential Rate Equation 1, Cyclin (C)” on
page B-4:

dC/dt = vi - (vd*X*C)/(Kd + C) - kd*C

The following equations are the rate and repeatedAssignment rules for “Differential
Rate Equation 2, Kinase (M)” on page B-4:

dM/dt = (V1*Mplus)/(K1 + Mplus) - (V2*M)/(K2 + M)
V1 = (VM1*C)/(Kc + C)
Mplus = Mt - M

 Minimal Cascade Model for a Mitotic Oscillator

B-5

The following equations are the rate and repeatedAssignment rules for “Differential
Rate Equation 3, Protease (X)” on page B-4:

dX/dt = (V3*Xplus)/(K3 + Xplus) - (V4*X)/(K4 + X)
V3 = VM3*M
Xplus = Xt - X

Rules

The active (M) and inactive (Mplus) forms of the kinase are assumed to be part of a
conserved cycle with the total concentration (Mt) remaining constant during the
simulation. You need only one differential rate equation with a mass balance equation to
define the amounts of both species. Similarly, the active (X) and inactive (Xplus) forms of
the protease are part of a second conserved cycle.

SimBiology Simulation with Rules

This is a simulation of Goldbeter's minimal mitotic oscillator using differential rate and
algebraic equations. Simulate with the sundials solver and plot species C, M, and X. For
a description of the model, see “SimBiology Model with Rules” on page B-5.

B Minimal Cascade Model for a Mitotic Oscillator

B-6

SimBiology Model with Reactions
• “Converting Differential Rate Equations to Reactions” on page B-7
• “Calculating Initial Values for Reactions” on page B-9
• “SimBiology Simulation with Reactions” on page B-16

Converting Differential Rate Equations to Reactions

In the literature, many models are defined with differential rate equations. With
SimBiology software, creating the differential equations from reactions is unnecessary;
you can enter the reactions and let the software calculate the equations.

Some models are defined with differential rate equations, and you might need the
reactions to be compatible with your model. Two rules you can use to convert differential
rate equations to reactions are:

• For a positive term — The species described by the equation is placed on the right as
a product, and the species in the term are placed on the left as reactants.

• For a negative term — The species described by the equation is placed on the left as
a product, and the species in the term are also placed on the left as reactants.

You need to determine the products using additional information, for example, a
reaction diagram, a description of the model, or an understanding of a reaction. If a
reaction is catalyzed by a kinase, then you can conclude that the product has one or
more additional phosphate groups.

A simple first-order reaction has differential rate equation dR/dt = +kr[P] - kf[R].
The negative term implies that the reaction is R -> ? with an unknown product. The
positive term identifies the product and completes the reaction, R <-> P.
Reactions R1 to R3 from Equation E1

The differential rate equation 1 is repeated here for comparison with the reactions. See
“Differential Rate Equation 1, Cyclin (C)” on page B-4.

dC
dt = vi− vdX C

Kd + C − kdC

The reaction and reaction rate equations from the differential rate equation E1 are given
below:

r1 reaction: null -> C
 reaction rate: vi

 Minimal Cascade Model for a Mitotic Oscillator

B-7

r2 reaction: C -> null
 reaction rate: kd*C

r3 reaction: C -> null
 reaction rate: (vd*X*C)/(Kd + C)

Reactions R4 and R5 from Equation E2

The differential rate equation 2 and algebraic equation 2 are repeated here for
comparison with the reactions. See “Differential Rate Equation 2, Kinase (M)” on page B-
4.

dM
dt = V1

(1 −M)
K1 + (1 −M) − V2

M
K2 + M

V1 =
VM1[C]
Kc + [C]

The reaction and reaction rate equations from the differential rate equation E2 are given
below:

r4 reaction: Mplus -> M
 reaction rate: V1*Mplus/(K1 + Mplus)
 repeatedAssignment rule: V1 = VM1*C/(Kc + C)

r5 reaction: M -> Mplus
 reaction rate: V2*M/(K2 + M)

Reactions R6 and R7 from Equation E3

The differential rate equation for equation 3 and algebraic equation 3 is repeated here for
comparison with the reactions.

dX
dt = V3

(1 − X)
K3 + (1 − X) − V4

X
K4 + X

V3 = VM3*[M]

The reaction and reaction rate equations from the differential rate equation E3 are given
below:

r6 reaction: Xplus -> X
 reaction rate: V3*Xplus]/(K3 + Xplus)

B Minimal Cascade Model for a Mitotic Oscillator

B-8

 repeatedAssignment rule: V3 = VM3*M

r7 reaction: X -> Xplus
 reaction rate: V4*X/(K4 + X)

Calculating Initial Values for Reactions

After you converted the differential rate equations to the reactions and reaction rate
equations, you can start to fill in initial values for the species (reactants and products)
and parameters.

The initial values for parameters and amounts for species are listed with four different
units in the same dimension:

• A — Original units in the Goldbeter 1991 paper.
• B — Units of concentration with time converted to second. When converting a to b, use

1 minute = 60 second for parameters.

X uM
minute x 1e‐6 mole/liter

1 uM x 1 minute
60 second = Y mole

liter*second
• C — Units of amount as moles. When converting concentration to moles, use a cell

volume of 1e-12 liter and assume that volume does not change.

Y mole
liter*second x 1e‐12 liter = Z mole

second
• D — Units of amount as molecules. When converting amount as moles to molecules,

use 6.022e23 molecules = 1 mole.

Z mole
second x 6.022e23 molecule

1 mole = N molecules
second

With dimensional analysis on and unit conversion off, select all of the units for one letter.
For example, select all of the As. If dimensional analysis and unit conversion are on, you
can mix and match letters and get the same answer.

Reaction 1 Cyclin Synthesis

R1 Value Units
reaction null -> C ---- ----
reaction rate vi ---- A. uM/minute

 Minimal Cascade Model for a Mitotic Oscillator

B-9

R1 Value Units
 ---- B. mole/(liter*second)
 ---- C. mole/second
 ---- D. molecule/second
parameters vi 0.025 A. uM/minute
 4.167e-10 B. mole/(liter*second)
 4.167e-22 C. mole/second
 205 D. molecule/second
species C 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule

Reaction 2 Cyclin Undifferentiated Degradation

R2 Value Units
reaction C -> null ---- ----
reaction rate kd*C ---- A. uM/minute
 ---- B. mole/(liter*second)
 ---- C. mole/second
 ---- D. molecule/second
parameters kd 0.010 A. 1/minute
 1.6667e-4 B, C, D. 1/second
species C 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule

Reaction 3 Cyclin Protease Degradation

B Minimal Cascade Model for a Mitotic Oscillator

B-10

R3 Value Units
reaction C -> null ---- ----
reaction rate (vd*X*C)/(Kd + C) ---- A. uM/minute
 ---- B. mole/(liter*second)
 ---- C. mole/second
 ---- D. molecule/second
parameter vd 0.25 A. 1/minute
 0.0042 B, C, D. 1/second
parameter Kd 0.02 A. uM
 2.0e-8 B. mole/liter
 2.0e-020 C. mole
 12044 D. molecule
species C (substrate) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule
species X (enzyme) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule

Reaction 4 Cdc2 Kinase Activation

R4 Value Units
reaction Mplus -> M ---- ----
reaction rate (V1*Mplus)/(K1 +

Mplus)
---- A. uM/minute

 ---- B. mole/(liter*second)
 ---- C. mole/second
 ---- D. molecule/second

 Minimal Cascade Model for a Mitotic Oscillator

B-11

R4 Value Units
repeatedAssignm
ent rule

V1 = (VM1*C)/(Kc + C) ----

parameter V1 (variable by rule) 0.00 A. uM/minute

B. mole/(liter*second)

C. mole/second

D. molecule/second
parameter VM1 3.0 A. uM/minute
 5.0e-8 B. mole/(liter*second)
 5.0000e-020 C. mole/second
 30110 D. molecule/second
parameter Kc 0.5 A. uM
 5.0000e-7 B. mole/liter
 5.0e-19 C. mole
 3.011e+5 D. molecule
parameter K1 0.005 A. uM
 5e-9 B. mole/liter
 5e-21 C. mole
 3.011e+3 D. molecule
species Mplus (inactive substrate) 0.99 A. uM
 9.9e-7 B. mole/liter
 9.9e-19 C. mole
 5.962e+5 D. molecule
species M (active product) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule
species C 0.01 A. uM
 1e-8 B. mole/liter

B Minimal Cascade Model for a Mitotic Oscillator

B-12

R4 Value Units
 1.0e-20 C. mole
 6.022e+3 D. molecule

Reaction 5 Cdc2 Kinase Deactivation

R5 Value Units
reaction M -> M_plus ---- ----
reaction rate (V2*M)/(K2 + M) ---- A. uM/minute
 ---- B. (mole/liter-second)
 ---- C. mole/second
 ---- D. molecule/second
parameter V2 1.5 A. uM/minute
 2.5000e-008 B. mole/liter-second
 2.5000e-020 C. mole/second
 15055 D. molecule/second
parameter K2 0.005 A. uM
 5.0000e-009 B. mole/liter
 5.0000e-021 C. mole
 3011 D. molecule
 1.0e-20 C. mole
species Mplus (inactive) 0.99 A. uM
 9.9e-7 B. mole/liter
 9.9e-19 C. mole
 5.962e+5 D. molecule
species M (active) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule

Reaction 6 Protease Activation

 Minimal Cascade Model for a Mitotic Oscillator

B-13

R6 Value Units
reaction Xplus -> X ---- ----
reaction rate (V3*Xplus)/(K3 +

Xplus)
---- A. uM/minute

 ---- B. mole/(liter*second)
 ---- C. mole/second
 ---- D. molecule/second
repeatedAssign
ment rule

V3 = VM3*M ----

parameter V3 (variable by rule) A. uM/minute

B. mole/liter-second

C. mole/second

D. molecule/second
parameter VM3 1.0 A. 1/minute
 0.0167 B, C, D. 1/second
parameter K3 0.005 A. uM
 5e-9 B. mole/liter
 5e-21 C. mole
 3.011e+3 D. molecule
species Xplus (inactive substrate) 0.99 A. uM
 9.9e-7 B. mole/liter
 9.9e-19 C. mole
 5.962e+5 D. molecule
species X (active product) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule
species M (enzyme) 0.01 A. uM
 1e-8 B. mole/liter

B Minimal Cascade Model for a Mitotic Oscillator

B-14

R6 Value Units
 1.0e-20 C. mole
 6.022e+3 D. molecule

Reaction 7 Protease Deactivation

R7 Value Units
reaction X -> X_plus ---- ----
reaction rate (V4*X)/(K4 + X) ---- A. uM/minute
 ---- B. mole/(liter*second)
 ---- C. mole/second
 ---- D. molecule/second
parameter V4 0.5 A. uM/minute
 8.3333e-009 B. mole/(liter*second)
 8.3333e-021 C. mole/second
 5.0183e+003 D. molecule/second
parameter K4 0.005 A. uM
 5e-9 B. mole/liter
 5e-21 C. mole
 3011 D. molecule
species Xplus (inactive) 0.99 A. uM
 9.9e-7 B. mole/liter
 9.9e-19 C. mole
 5.962e+5 D. molecule
species X (active) 0.01 A. uM
 1e-8 B. mole/liter
 1.0e-20 C. mole
 6.022e+3 D. molecule

 Minimal Cascade Model for a Mitotic Oscillator

B-15

SimBiology Simulation with Reactions

This is a simulation of Goldbeter's minimal mitotic oscillator with rate and algebraic
equations. Simulate with the sundials solver and plot species C, M, and X. For a
description of the model, see “SimBiology Model with Reactions” on page B-7.

References

[1] Goldbeter A. (1991), “A minimal cascade model for the mitotic oscillator involving
cyclin and cdc2 kinase,” Proceedings of the National Academy of Sciences USA,
88:9107-9111.

[2] Goldbeter A., Koshland D. (1981), “An amplified sensitivity arising from covalent
modification in biological systems,” Proceedings of the National Academy of
Sciences USA, 78:6840-6844.

[3] Goldbeter A., Koshland D. (1984), “Ultrasensitivity in biochemical systems controlled
by covalent modification,” The Journal of Biological Chemistry, 259:14441-14447.

[4] Goldbeter A., home page on the Web, http://www.ulb.ac.be/sciences/utc/GOLDBETER/
agoldbet.html.

[5] Murray A.W., Kirschner M.W. (1989), “Cyclin synthesis drives the early embryonic cell
cycle,” Nature, 339:275-280.

B Minimal Cascade Model for a Mitotic Oscillator

B-16

Model of the Yeast Heterotrimeric G Protein Cycle

In this section...
“Background on G Protein Cycles” on page B-17
“Modeling a G Protein Cycle” on page B-18
“References” on page B-21

Background on G Protein Cycles
• “G Proteins” on page B-17
• “G Proteins and Pheromone Response” on page B-18

G Proteins

Cells rely on signal transduction systems to communicate with each other and to regulate
cellular processes. G proteins are GTP-binding proteins that are involved in the regulation
of many cellular processes. There are two known classes of G proteins: the monomeric G
proteins (one GTPase), and the heterotrimeric G proteins (three different monomers). The
G proteins usually facilitate a step requiring energy. This energy is supplied by the
hydrolysis of GTP by a GTPase activating protein (GAP). The exchange of GDP for GTP is
catalyzed by a guanine nucleotide releasing protein (GNRP) [Alberts et al. 1994 on page
B-21].

Gprotein + GTP
GNRP

GAP
Gprotein + GDP

G protein-coupled receptors (GPCRs) are the targets of many pharmaceutical agents.
Some estimates suggest that 40 to 50% of currently marketed drugs target GPCRs and
that 40% of current drug discovery focus is on GPCR targets. Some examples include
those for reducing stomach acid (ranitidine which targets histamine H2 receptor),
migraine (sumatriptan, which targets a serotonin receptor subtype), schizophrenia
(olanzapine, which targets serotonin and dopamine receptors), allergies (desloratadine,
which targets histamine receptors). One approach in pharmaceutical research is to model
signaling pathways to analyze and predict both downstream effects and effects in related
pathways. This tutorial examines model building and analysis of the G protein cycle in the
yeast pheromone response pathway using the SimBiology desktop.

 Model of the Yeast Heterotrimeric G Protein Cycle

B-17

G Proteins and Pheromone Response

In the yeast Saccharomyces cerevisiae, G protein signaling in pheromone response is a
well characterized signal transduction pathway. The pheromone secreted by alpha cells
activates the G protein-coupled α-factor receptor (Ste2p) in a cells which results in a
variety of cell responses including cell-cycle arrest and synthesis of new proteins. The
authors of the study performed a quantitative analysis of this cycle, compared the
regulation of G protein activation in wild-type yeast haploid a cells with cells containing
mutations that confer supersensitivity to α-factor. They analyzed the data in the context of
cell-cycle arrest and pheromone-induced transcriptional activation and developed a
mathematical model of the G protein cycle that they used to estimate rates of activation
and deactivation of active G protein in the cell.

Modeling a G Protein Cycle
• “Reactions Overview” on page B-18
• “Assumptions, Experimental Data, and Units in the G Protein Model” on page B-20

Reactions Overview

Systems biologists represent biological pathways and processes as reactions with
reaction rates, and treat the components of these pathways as individual species.

The G protein cycle in the yeast pheromone-response pathway can be condensed into a
set of biochemical reactions. These reactions are complex formation, transformation, or
disassociation reactions that Yi and colleagues [Yi et al. 2003 on page B-21] use to
simplify and describe the system. In this example, α-factor, α-factor receptor, and the G
protein subunits are all treated as species participating in reactions. The system can be
graphically represented as follows.

B Model of the Yeast Heterotrimeric G Protein Cycle

B-18

The following table shows you the reactions used to model the G protein cycle and the
corresponding rate constants (rate parameters) for each reaction. For reversible
reactions, the forward rate parameter is listed first.

No. Name Reaction Rate
Parameters

1 Receptor-ligand interaction L + R <-> RL kRL, kRLm
2 Heterotrimeric G protein

formation
Gd + Gbg -> G kG1

3 G protein activation RL + G -> Ga + Gbg + RL kGa
4 Receptor synthesis and

degradation
R <-> null kRdo, kRs

5 Receptor-ligand degradation RL -> null kRD1
6 G protein inactivation Ga -> Gd kGd

 Model of the Yeast Heterotrimeric G Protein Cycle

B-19

Note that in reaction 3 (G protein activation), RL appears on both sides of the reaction.
This is because RL is treated as a modifier or catalyst, and the model assumes that there
is no synthesis or consumption of RL in this reaction.

The authors use a set of ordinary differential equations (ODEs) to describe the system. In
the software, you can represent the biological pathway as a system of biochemical
reactions and the software creates the ODEs for you. Alternatively, if you have a set of
ODEs that describe your system you can enter these as rate rules. For an example of
modeling using rate rules, see “SimBiology Model with Rate Rules” on page B-5.

Assumptions, Experimental Data, and Units in the G Protein Model

The authors have obtained experimental data either through their own measurements or
through published literature. As with any other model, the G protein cycle model
simplifies the biological process while also trying to reconcile the experimental data.
Consider these points:

• Reaction 2 — Binding and formation of the heterotrimeric G protein complex is treated
as a single-step reaction.

• Reaction 3 — Activation of G protein is modeled as a single-step. Guanine nucleotide
exchange factors (GEFs) are not modeled.

• Reactions 3 and 6 — The parameters for the rate of G protein activation and
deactivation (kGa and kGd) have been estimated based on the dose response curves in
the reference paper. The SimBiology model being built in this tutorial directly uses
those values.

• Reactions 4 and 5 — Receptor synthesis and degradation are handled purely as two
simple reaction steps.

• Reaction 6 — Deactivation of G protein by the regulator of G protein signaling (RGS)
protein Sst2p is modeled as a single step. Sst2p is not modeled.

The reaction is modeled with an estimated reaction rate of 0.11 s-1) in the Sst2p
containing wild-type strain. The uncatalyzed reaction rate is estimated to be 0.004
s-1 in a strain with a deletion of SST2 (sst2Δ, mutant strain).

• Free GDP, GTP, and Pi are not included in the model.

This tutorial shows you how to plot the experimental data over the simulation plot of the
active G protein fraction. You can estimate the values of the experimental data of interest
for this example from the coordinates of the plots found in Figure 5 of the reference
paper [Yi et al. 2003 on page B-21]. The following values were obtained by comparing
the coordinates of the standards with those of the unknowns in the figure.

B Model of the Yeast Heterotrimeric G Protein Cycle

B-20

Time Fraction of Active Ga (Experimental)
0 0.00
10 0.35
30 0.40
60 0.36
110 0.39
210 0.33
300 0.24
450 0.17
600 0.20

Note The SimBiology Dimensional Analysis feature is not used in this tutorial. For this
tutorial, the values of all species are converted to have the unit molecule, and all rate
parameters are converted to have either the unit 1/second or the units 1/
(molecule*second), depending on whether the reaction is first or second order. You
should leave the InitialAmountUnits box for species and the ValueUnits box for rate
parameters empty for the models in this tutorial.

References

[1] Tau-Mu Yi, Hiroaki Kitano, and Melvin I. Simon. A quantitative characterization of the
yeast heterotrimeric G protein cycle. PNAS (2003) vol. 100, 10764-10769.

[2] Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D. Molecular Biology
of the Cell, 3rd edition, Garland Publishing, 1994.

See Also

Related Examples
• “Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in the Yeast

Heterotrimeric G Protein Cycle”

 See Also

B-21

Model of M-Phase Control in Xenopus Oocyte Extracts
John Tyson's Computational Cell Biology Lab created a mathematical model for M-phase
control in Xenopus oocyte (frog egg) extracts [Marlovits et al. 1998 on page B-55]. The
M-phase control model shows principles by which you can apply phosphorylation and
regulatory loops in your own models. Publications typically list systems of ordinary
differential equations (ODEs) that represent a model system. This example shows you how
to interpret these ODEs in the form of reaction pathways that are easier to represent and
visualize in SimBiology software.

The model is centered around M-phase promoting factor (MPF). There are two positive
feedback loops where MPF increases its synthesis and a negative feedback loop where
MPF decreases its amount by increasing its degradation.

In this section...
“M-Phase Control Model” on page B-22
“M-Phase Control Equations” on page B-24
“SimBiology Model with Rate and Algebraic Rules” on page B-32
“SimBiology Model with Reactions and Algebraic Rules” on page B-38
“References” on page B-55

M-Phase Control Model
• “Synthesis Reactions” on page B-22
• “Regulation Reactions with Active MPF” on page B-23

Synthesis Reactions

Cyclin B (CycB) dimerizes with Cdc2 kinase (Cdc2) to form M-phase promoting factor
(MPF).

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-22

Regulation Reactions with Active MPF

Positive feedback loops with M-phase promoting factor (MPF) activate the Cdc25
phosphatase and deactivate the Wee1 kinase. A negative feedback loop with MPF
activates anaphase-promoting complex (APC) that regulates the degradation of the Cyclin
B subunit.

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-23

M-Phase Control Equations
• “About the Rate Equations in This Example” on page B-25
• “Converting Differential Equations to Reactions” on page B-25
• “Equation 1, Cyclin B” on page B-26
• “Equation 2, M-Phase Promoting Factor” on page B-26
• “Equation 3, Inhibited M-Phase Promoting Factor” on page B-27
• “Equation 4, Inhibited and Activated M-Phase Promoting Factor” on page B-28
• “Equation 5, Activated M-Phase Promoting Factor” on page B-28
• “Equation 11, Cell Division Control 25” on page B-29

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-24

• “Equation 12, Wee1 Activation/Deactivation” on page B-29
• “Equation 13, Intermediate Enzyme Activation/Deactivation” on page B-30
• “Equation 14, APC Activation/Deactivation” on page B-30
• “Equation 17, Rate Parameter K2” on page B-31
• “Equation 18, Rate Parameter Kcdc25” on page B-31
• “Equation 19, Rate Parameter Kwee1” on page B-32

About the Rate Equations in This Example

Models in systems biology are commonly described in the literature with differential rate
equations. However, SimBiology software defines a model using reactions. This section
shows you how to convert models published in the literature to a SimBiology format. The
equation numbers match the published paper for this model [Marlovits et al. 1998 on
page B-55]. Equations that are missing in the sequence involve the Cdk inhibitor (CKI)
protein, which is not currently modeled in the SimBiology version.

Converting Differential Equations to Reactions

The rules for writing reaction and reaction rate equations from differential rate equations
include not only the equations but also an understanding of the reactions. dx/dt refers to
the species the differential rate equation is defining. kinetics refers to the species in
the reaction rate.

• Positive terms: Rate species are placed on right side of the reactions; reaction rate
equation species are placed on the left.

kinetics dx
dt

• Negative terms: Rate species are placed on the left side of the reaction because the
species are being used up in some way; reaction rate equation species are also placed
on left. You need to deduce the products from additional information about the model.

kinetics or (dx
dt) products?

The following table will help you deduce the products for a reaction. In this example, by
convention, phosphate groups on the right side of a species name are activating while
phosphate groups on left are inhibiting.

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-25

Enzyme Description Reaction
wee1 Kinase, add inhibiting phosphate group MPF —> P-MPF
cdc25 Phosphatase, remove inhibiting

phosphate group
P-MPF —> MPF + P

kcak Kinase, add activating phosphate group MPF —> MPFp
kpp Phosphatase, remove activating

phosphate group
MPF-P —> MPF + P

MPF Kinase, add activating or inhibiting
phosphate group

Wee1/Cdc25/IE —> X-P or P-X

ki Add inhibiting Cki Cki + MPF —> Cki:MPF
kir Remove inhibiting Cki Cki:MPF —> Cki + MPF

Equation 1, Cyclin B

Differential rate equation for cyclin B [Marlovits et al. 1998 on page B-55].

d[CycB]
dt = + k1 ‐k2[CycB] ‐k3[Cdc2][CycB]

Rate rule using SimBiology format for the differential rate equation 1. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page B-32.

Rule 1 on page B-33 [CycB] = k1 - K2*[CycB] - k3*[Cdc2]*[CycB]

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page B-38.

Reaction 1 on page B-39 AA -> CycB v = k1
Reaction 2 on page B-40 CycB -> AA v = K2*[CycB]
Reaction 3 on page B-41 Cdc2 + CycB -> MPF v = k3*[Cdc2]*[CycB]

Equation 2, M-Phase Promoting Factor

Differential rate equation for M-phase promoting factor (MPF) [Marlovits 1998 on page B-
55]. Note that the parameter name kcakr [Marlovits et al. 1998 on page B-55] is
changed to kpp [Borisuk 1998 on page B-55] in the following reaction equations. MPF is
a heterodimer of cdc2 kinase and cyclin B.

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-26

d[MPF]
dt = +k3[Cdc2][CycB] ‐K2[MPF]

 +kpp[MPFp] ‐kcak[MPF]
 +Kcdc25[pMPF] ‐Kwee1[MPF]
 +kir[Cki:MPF] ‐ki[MPF][Cki]

Rate rule using SimBiology format for the differential rate equation 1. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page B-32.

Rule 2 on page B-33 MPF = kpp*MPFp - (Kwee1 + kcak + K2)*MPF + Kcdc25*pMPF + k3*Cdc2*CycB

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page B-38. A reaction name in parentheses denotes a reaction repeated in another
differential rate equation.

(Reaction 3 on page B-41) Cdc2 + CycB -> MPF v = k3*[Cdc2]*[CycB]
Reaction 4 on page B-42 MPF -> Cdc2 + AA v = K2*[MPF]
Reaction 5 on page B-43 MPFp -> MPF v = kpp*[MPFp]
Reaction 6 on page B-44 MPF -> MPFp v = kcak*[MPF]
Reaction 7 on page B-45 pMPF -> MPF v = Kcdc25*[pMPF]
Reaction 8 on page B-46 MPF -> pMPF v = Kwee1*[MPF]

Equation 3, Inhibited M-Phase Promoting Factor

Differential rate equation for inhibited M-phase promoting factor (pMPF) [Marlovits 1998
on page B-55].

d[pMPF]
dt = − K2[pMPF]

 +kpp[pMPFp] ‐kcak[pMPF]
 +Kwee1[MPF] ‐Kcdc25[pMPF]
 +kd[Cki:pMPF]

Rate rule using SimBiology format for the differential rate equation 3. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page B-32.

Rule 3 on page B-34 pMPF = Kwee1*MPF - (Kcdc25 + kcak + K2)*pMPF + kpp*pMPFp

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page B-38.

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-27

Reaction 11 on page B-48 pMPF -> Cdc2 + AA v = K2*[pMPF]
Reaction 12 on page B-48 pMPFp -> pMPF v = kpp*[pMPFp]
Reaction 13 on page B-48 pMPF -> pMPFp v = kcak*[pMPF]
(Reaction 8 on page B-46) MPF -> pMPF v = Kwee1*[MPF]
(Reaction 7 on page B-45) pMPF -> MPF v = Kcdc25*[pMPF]

Equation 4, Inhibited and Activated M-Phase Promoting Factor

Differential rate equation for inhibited and activated M-phase promoting factor (pMPFp)
[Marlovits 1998 on page B-55].

d[pMPFp]
dt = ‐K2[pMPFp]

 +kcak[pMPF] ‐kpp[pMPFp]
 +Kwee1[MPFp] ‐Kcdc25[pMPFp]
 +kd[Cki:pMPFp]

Rate rule using SimBiology format for the differential rate equation. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page B-32.

Rule 4 on page B-36 pMPFp = Kwee1*MPFp - (kpp + Kcdc25 + K2)*pMPFp + kcak*pMPF

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page B-38.

Reaction 15 on page B-49 pMPFp -> Cdc2 + AA v = K2*[pMPFp]
(Reaction 13 on page B-48) pMPF -> pMPFp v = kcak*[pMPF]
(Reaction 12 on page B-48) pMPFp -> pMPF v = kpp*[pMPFp]
Reaction 16 on page B-49 MPFp -> pMPFp v = Kwee1*[MPFp]
Reaction 17 on page B-49 pMPFp -> MPFp v = Kcdc25*[pMPFp]

Equation 5, Activated M-Phase Promoting Factor

Differential rate equation for activated M-phase promoting factor (MPFp) [Marlovits 1998
on page B-55].

d[MPFp]
dt = ‐K2[MPFp]

 +kcak[MPF] ‐kpp[MPFp]
 +Kcdc25[pMPFp] ‐Kwee1[MPFp]
 +kir[CKI:MPFp] ‐ki[CKI][MPFp]

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-28

Rate rule using SimBiology format for the differential rate equation 1. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page B-32.

Rule 5 on page B-36 MPFp = kcak*MPF - (kpp + Kwee1 + K2)*MPFp + Kcdc25*pMPFp

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page B-38.

Reaction 19 on page B-50 MPFp -> MPF + AA v = K2*[MPFp]
(Reaction 6 on page B-44) MPF -> MPFp v = kcak*[MPF]
(Reaction 5 on page B-43) MPFp -> MPF v = kpp*[MPFp]
(Reaction 17 on page B-49) pMPFp -> MPFp v = Kcdc25*[pMPFp]
(Reaction 16 on page B-49) MPFp -> pMPFp v = Kwee1*[MPFp]

Equation 11, Cell Division Control 25

Differential rate equation for activating and deactivating Cdc25 [Marlovits 1998 on page
B-55].

d[Cdc25p]
dt = +k25[MPFp][Cdc25]

Km25+[Cdc25] ‐ k25r[Cdc25p]
Km25r+[Cdc25p]

Rate rule in SimBiology format for the differential rate equation 1. For a model using this
rule, see “SimBiology Model with Rate and Algebraic Rules” on page B-32. Note that
since there isn't a rate rule for Cdc25, its amount is written as (TotalCdc25 -
Cdc25p).

Rule 11 on page B-37 Cdc25p = (k25*MPFp*(TotalCdc25 - Cdc25p))/(Km25 + (TotalCdc25 - Cdc25p)) - (k25r*PPase*Cdc25p)/(Km25r + Cdc25p)

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page B-38.

Reaction 36 Cdc25 -> Cdc25p, v = k25*[MPFp]*[Cdc25]/(Km25 + [Cdc25])
Reaction 37 Cdc25p -> Cdc25, v = k25r*[Cdc25p]/(Km25r + [Cdc25p])

Equation 12, Wee1 Activation/Deactivation

Differential rate equation for activating and deactivating Wee1 kinase [Marlovits 1998 on
page B-55]. The kinase (MPFp) phosphorylates active Wee1 (Wee1) to its inactive form
(Wee1p). The dephosphorylation of inactive Wee1 (Wee1p) is by an unknown phosphatase.

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-29

d[Wee1]
dt = − kw[MPFp][Wee1]

Kmw + [Wee1] + kwr[Wee1P]
Kmwr + [Wee1P]

Rate rule in SimBiology format for the differential rate equation 1. For a model using this
rule, see “SimBiology Model with Rate and Algebraic Rules” on page B-32.
Rule 12 Wee1p = (kw*MPFp*(TotalWee1 - Wee1p))/(Kmw + (TotalWee1 - Wee1p))
 - (kwr*Wee1p)/(Kmwr + Wee1p)

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page B-38.

reaction 38 Wee1 -> Wee1p, v = (kw*[MPFp]*[Wee1])/(Kmw + [Wee1])
reaction 39 Wee1p -> Wee1, v = (kwr*[Wee1p])/(Kmwr + [Wee1p])

Equation 13, Intermediate Enzyme Activation/Deactivation

Differential rate equation for activating and deactivating the intermediate enzyme (IE)
[Marlovits 1998 on page B-55]. The active kinase (MPFp) phosphorylates the inactive
intermediate enzyme (IE) to its active form (IEp).

d[IEp]
dt = + kie[MPFp][IE]

Kmie + [IE] − kier[IEp]
Kmier + [IEp]

Rate rule in SimBiology format for the differential rate equation 1. For a model using this
rule, see “SimBiology Model with Rate and Algebraic Rules” on page B-32.
Rule 13 IEp = (kie*MPFp*(TotalIE - IEp))/(Kmie + (TotalIE - IEp))
 - (kier*IEp)/(Kmier + IEp)

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page B-38.

reaction 40 IE -> IEp, v = (kie*[MPFp]*[IE])/(Kmie + [IE])
reaction 41 IEp -> IE, v = (kier*[IEp])/(Kmier + [IEp])

Equation 14, APC Activation/Deactivation

Differential rate equation for [Marlovits 1998 on page B-55].

d[APCa]
dt = + kap[IEP][APCi]

Kmap + [APCi] −
kapr[APCa]

Kmapr + [APCa]

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-30

Rate rule in SimBiology format for the differential rate equation 1. For a model using this
rule, see “SimBiology Model with Rate and Algebraic Rules” on page B-32.
Rule 14 APCa = (kap*IEp*(TotalAPC - APCa))/(Kmap + (TotalAPC - APCa))
 - (kapr*APCa)/(Kmapr + APCa)

Reaction and reaction rate equations derived from the differential rate equation. For a
model using these reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page B-38.

Reaction 42 APCi -> APCa, v = (kap*[IEp]*[APCi])/(Kmap + [APCi])
Reaction 43 APCa -> APCi, v = (kapr*[APCa])/(Kmapr + [APCa])

Equation 17, Rate Parameter K2

Algebraic equation to define the rate parameter K2 [Marlovits 1998 on page B-55].
Inactive APC (APCi) is catalyzed by IE (intermediate enzyme) to active APC (APCa).

k2 = V2'[APC] + V2''[APC']

Algebraic rule in SimBiology format for the algebraic equation 17. For a model using this
rule, see “SimBiology Model with Rate and Algebraic Rules” on page B-32.

Algebraic Rule 17 V2i*(TotalAPC - APCa) + V2a*APCa - K2

Algebraic rule when simulating with reactions. For a model using this rule with reactions,
see “SimBiology Model with Reactions and Algebraic Rules” on page B-38. V2' is
renamed to V2i and V2"is renamed to V2a. APCi (APC) is the inactive form of the enzyme
while APCa (APC') is the active form. K2 is the independent variable.

Algebraic Rule 1 (V2i*APCi) + (V2a*APCa) - K2

Equation 18, Rate Parameter Kcdc25

Algebraic equation to define the rate parameter Kcdc25 [Marlovits 1998 on page B-55].
Inactive Cdc25 (Cdc25) is phosphorylated by MPF to active Cdc25 (Cdc25p).

kcdc25 = V25'[Cdc25] + V25''[Cdc25p]

Algebraic rule in SimBiology format for the algebraic equation 18. For a model using this
rule, see “SimBiology Model with Rate and Algebraic Rules” on page B-32.

Algebraic Rule 18 V25i*(TotalCdc25 - Cdc25p) + V25a*Cdc25p - Kcdc25

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-31

Algebraic rule when simulating with reactions. Kcdc25 is the independent variable. For a
model using this rule with reactions, see “SimBiology Model with Reactions and Algebraic
Rules” on page B-38.

Algebraic Rule 2 (V25i*Cdc25) + (V25a*Cdc25p) - Kcdc25

Equation 19, Rate Parameter Kwee1

Algebraic equation to define the rate parameter [Marlovits 1998 on page B-55]. Active
Wee1 (Wee1) is phosphorylated by MPF to inactive Wee1 (Wee1p).

kwee1 = Vwee1'[Wee1p] + Vwee1''[Wee1]

Algebraic rule in SimBiology format for rate parameter equation 19. For a model using
this rule, see “SimBiology Model with Rate and Algebraic Rules” on page B-32.

Algebraic Rule 19 Vwee1i*Wee1p + Vwee1a*(TotalWee1 - Wee1p) - Kwee1

Algebraic rule when simulating with reactions. Kwee1 is the independent variable. For a
model using this rule with reactions, see “SimBiology Model with Reactions and Algebraic
Rules” on page B-38.

Algebraic Rule 3 (Vwee1i*Wee1p) + (Vwee1a*Wee1) - Kwee1

SimBiology Model with Rate and Algebraic Rules
• “Overview” on page B-33
• “Writing Differential Rate Equations as Rate Rules” on page B-33
• “Species” on page B-33
• “Parameters” on page B-34
• “Rate Rule 1, Cyclin B (CycB)” on page B-35
• “Rate Rule 2, M-Phase Promoting Factor (MPF)” on page B-36
• “Rate Rule 3, Inhibited M-Phase Promoting Factor (pMPF)” on page B-36
• “Rate Rule 4, Activated but Inhibited M-Phase Promoting Factor (pMPFp)”

on page B-36
• “Rate Rule 5, Activated M-Phase Promoting Factor (MPFp)” on page B-36
• “Rate Rule 11, Activated Cdc25 (Cdc25p)” on page B-37
• “Rate Rule 12, Inhibited Wee1 (Wee1p)” on page B-37

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-32

• “Rate Rule 13, Activated Intermediate Enzyme (IEp)” on page B-37
• “Rate Rule 14, Activated APC (APCa)” on page B-37
• “Algebraic Rule 17, Rate Parameter K2” on page B-37
• “Algebraic Rule 18, Rate Parameter Kcdc25” on page B-38
• “Algebraic Rule 19, Rate Parameter Kwee1” on page B-38

Overview

There is one rate rule for each equation defining a species and one algebraic rule for each
variable parameter in the M-phase control model [Marlovits 1998 on page B-55]. For a
list and description of the equations, see “M-Phase Control Equations” on page B-24.

A basic model includes rate rules 1 to 5 and 11 to 14 with algebraic rules 17, 18, and 19.

Writing Differential Rate Equations as Rate Rules

Writing differential rate equations in an unambiguous format that a software program can
understand is a simple process when you follow the syntax rules for programming
languages.

• Use an asterisk to indicate multiplication. For example, k[A] is written k*A or k*[A].
The brackets around the species A do not indicate concentration.

• SimBiology uses square brackets around species and parameter name to allow names
that are not valid MATLAB variable names. For example, you could have a species
named glucose-6-phosphate dehydrogenase but you need to add brackets
around the name in reaction rate and rule equations.

[glucose-6-phosphate dehydrogenase]

• Use parentheses to clarify the order of evaluation for mathematical operations. For
example, do not write Henri-Michaelis-Menten reaction rates as Vm*C/Kd + C,
because Vm*C is divided by Kd before adding C to the result. Instead, write this
reaction rate as (Vm*C)/(Kd + C).

Species

The following table lists species in the model with their initial amounts. There are three
variable parameters modeled as species (K2, Kcdc25, and KWee1). You could also model
the variable parameters as parameters with the property ConstantAmount cleared.

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-33

Parameters

The following table lists parameters in the model with their initial values. The property
ConstantValue is selected for all of the parameters.

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-34

Rate Rule 1, Cyclin B (CycB)

The rate rule is from “Equation 1, Cyclin B” on page B-26.

 rate rule: CycB = k1 - K2*CycB - k3*Cdc2*CycB
 species: CycB = 0 nM

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-35

 Cdc2 = 100 nM, [x]constant
parameters: k1 = 1 nM/minute
 K2 = 0 1/minute, []constant
 k3 = 0.005 1/(nM*minute)

K2 is a variable rate parameter whose value is defined by an algebraic rule. See
“Algebraic Rule 17, Rate Parameter K2” on page B-37. Its value varies from 0.005 to
0.25 1/minute.

Rate Rule 2, M-Phase Promoting Factor (MPF)

The rate rule is from “Equation 2, M-Phase Promoting Factor” on page B-26.
 rate rule: MPF = kpp*MPFp - (Kwee1 + kcak + K2)*MPF + Kcdc25*pMPF
 + k3*Cdc2*CycB
 species: MPF = 0 nM
 MPFp = 0 nM
 pMPF = 0 nM
parameters: kpp = 0.004 1/minute
 kcak = 0.64 1/minute
 k3 = 0.005 1/(nM*minute)
 K2 = 0 1/minute
 Kcdc25 = 0 1/minute
 Kwee1 = 0 1/minute

K2, Kcdc25, and Kwee1 are variable rate parameters whose values are defined by
algebraic rules. See “Algebraic Rule 17, Rate Parameter K2” on page B-37, “Algebraic
Rule 18, Rate Parameter Kcdc25” on page B-38, and “Algebraic Rule 19, Rate Parameter
Kwee1” on page B-38.

Rate Rule 3, Inhibited M-Phase Promoting Factor (pMPF)

The rate rule is from “Equation 3, Inhibited M-Phase Promoting Factor” on page B-27.

rate rule: pMPF = Kwee1*MPF - (Kcdc25 + kcak + K2)*pMPF + kpp*pMPFp

Rate Rule 4, Activated but Inhibited M-Phase Promoting Factor (pMPFp)

The rate rule is from “Equation 4, Inhibited and Activated M-Phase Promoting Factor” on
page B-28.

rate rule: pMPFp = Kwee1*MPFp - (kpp + Kcdc25 + K2)*pMPFp + kcak*pMPF

Rate Rule 5, Activated M-Phase Promoting Factor (MPFp)

The rate rule is from “Equation 5, Activated M-Phase Promoting Factor” on page B-28.

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-36

rate rule: MPFp = kcak*MPF - (kpp + Kwee1 + K2)*MPFp + Kcdc25*pMPFp

Rate Rule 11, Activated Cdc25 (Cdc25p)

The rate rule is from “Equation 11, Cell Division Control 25” on page B-29.

rate rule: Cdc25p = (k25*MPFp*(TotalCdc25 - Cdc25p))/(Km25 + (TotalCdc25 - Cdc25p))
 - (k25r*PPase*Cdc25p)/(Km25r + Cdc25p)

Rate Rule 12, Inhibited Wee1 (Wee1p)

The rate rule is from “Equation 12, Wee1 Activation/Deactivation” on page B-29.

rate rule: Wee1p = (kw*MPFp*(TotalWee1 - Wee1p))/(Kmw + (TotalWee1 - Wee1p))
 - (kwr*PPase*Wee1p)/(Kmwr + Wee1p)

Rate Rule 13, Activated Intermediate Enzyme (IEp)

The rate rule is from “Equation 13, Intermediate Enzyme Activation/Deactivation” on
page B-30.

rate rule: IEp = (kie*MPFp*(TotalIE - IEp))/(Kmie + (TotalIE - IEp))
 - (kier*PPase*IEp)/(Kmier + IEp)

Rate Rule 14, Activated APC (APCa)

The rate rule is from “Equation 14, APC Activation/Deactivation” on page B-30.

rate rule: APCa = (kap*IEp*(TotalAPC - APCa))/(Kmap + (TotalAPC - APCa))
 - (kapr*AntiAPC*APCa)/(Kmapr + APCa)

Algebraic Rule 17, Rate Parameter K2

K2 is a variable rate parameter whose value is determined by the amount of active and
inactive APC. The algebraic rule is from “Equation 17, Rate Parameter K2” on page B-31.

algebraic rule: V2i*(TotalAPC - APCa) + V2a*APCa - K2
 species: APCi = 1 nM
 APCa = 0 nM
 TotalAPC = 1 nM [x]constant
 parameters: K2 = 0 or 0.25 1/minute, []constant
 V2i = 0.005 1/(nM*minute)
 V2a = 0.25 1/(nM*minute)

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-37

Algebraic Rule 18, Rate Parameter Kcdc25

Kcdc25 is a variable rate parameter whose value is determined by the amount of active
and inactive Cdc25. The algebraic rule is from “Algebraic Rule 18, Rate Parameter
Kcdc25” on page B-38.

algebraic rule: V25i*(TotalCdc25 - Cdc25p) + V25a*Cdc25p - Kcdc25

Algebraic Rule 19, Rate Parameter Kwee1

Kwee1 is a variable rate parameter whose value is determined by the amount of active
and inactive Wee1. The algebraic rule is from “Equation 19, Rate Parameter Kwee1” on
page B-32.

algebraic rule: Vweei*Wee1p + Vweea*(TotalWee1 - Wee1p) - Kwee1

SimBiology Model with Reactions and Algebraic Rules
• “Overview” on page B-39
• “Reaction 1, Synthesis of Cyclin B” on page B-39
• “Reaction 2, Degradation of Cyclin B” on page B-40
• “Reaction 3, Dimerization of Cyclin B with Cdc2 Kinase” on page B-41
• “Reaction 4, Degradation of Cyclin B on MPF” on page B-42
• “Reaction 5, Deactivation of Active MPF” on page B-43
• “Reaction 6, Activation of MPF” on page B-44
• “Reaction 7, Remove Inhibiting Phosphate from Inhibited MPF” on page B-45
• “Reaction 8, Inhibition of MPF by Phosphorylation” on page B-46
• “Reaction 11, Degradation of Cyclin B on Inhibited MPF” on page B-48
• “Reaction 12, Deactivation of MPF to Inhibited MPF” on page B-48
• “Reaction 13, Activation of Inhibited MPF” on page B-48
• “Reaction 15, Degradation of Cyclin B on Active but Inhibited MPF” on page B-49
• “Reaction 16, Inhibit MPF by Phosphorylation” on page B-49
• “Reaction 17, Remove Inhibiting Phosphate from Activated MPF” on page B-49
• “Reaction 19, Degradation of Cyclin B on Activated MPF” on page B-50
• “Reaction 36, Activation of Cdc25 by Activated MPF” on page B-50

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-38

• “Reaction 37, Deactivation of Cdc25” on page B-50
• “Reaction 38, Deactivation of Wee1 by Active MPF” on page B-51
• “Reaction 39, Activation of Wee1” on page B-51
• “Reaction 40, Activation of Intermediate Enzyme by Active MPF” on page B-51
• “Reaction 41, Deactivation of IE” on page B-51
• “Reaction 42, APC Activation by IEp” on page B-52
• “Reaction 43, APC Deactivation” on page B-52
• “Block Diagram of the M-Phase Control Model with Reactions” on page B-52

Overview

There can be one or more reactions for an equation defining a species and one algebraic
rule for each variable parameter in the M-phase control model [Marlovits 1998 on page B-
55]. For a list and description of the equations, see “M-Phase Control Equations” on
page B-24.

A basic model includes reactions 1 to 8, 11 to 13, 15 to 17, 19, and 36 to 43 with
algebraic rules from equations 17, 18, and 19.

Reaction 1, Synthesis of Cyclin B

Cyclin B is synthesized at a constant rate.

 reaction: AA -> CycB
reaction rate: k1 nM/minute
 parameter: k1 = 1 nM/minute
 species: CycB = 0 nM
 AA = 100 nM [x]constant [x]boundary

Simulate reaction 1 with the sundials solver.

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-39

Reaction 2, Degradation of Cyclin B

Cyclin B is degraded at the end of the M-phase.

 reaction: CycB -> AA
 reaction rate: K2*CycB nM/minute
 parameters: K2 = 0 1/minute, []constant, variable by rule
 V2i = 0.005 1/nM*minute
 V2a = 0.25 1/nM*minute
 species: CycB = 0 nM
 APCi = 1 nM
 APCa = 0 nM
 AA = 100 nM [x]constant [x]boundary
algebraic rule: (V2i*APCi) + (V2a*APCa) - K2

Initially, Cyclin B degradation is low. This implies the amount of active APC (APCa) = 0
and inactive APC (APCi) = APCtotal = 1 nM.

Test the algebraic rule by simulating reactions 1 and 2 with APCi = 0 and APCa = 1.

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-40

Reaction 3, Dimerization of Cyclin B with Cdc2 Kinase

Cyclin B dimerizes with Cdc2 kinase to form M-phase promoting factor (MPF).

 reaction: Cdc2 + CycB -> MPF
reaction rate: k3*Cdc2*CycB nM/minute
 parameters: k3 = 0.005 1/(nM*minute)
 species: Cdc2 = 100 nM
 CycB = 0 nM
 MPF = 0 nM

Test the model by simulating with K2 = 0.25.

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-41

Reaction 4, Degradation of Cyclin B on MPF

Cyclin B is tagged with ubiquitin groups and degrades while bound to Cdc2.

 reaction: MPF -> Cdc2 + AA
 reaction rate: K2*[MPF]
 parameters: K2 = 0 or 0.25 1/minute, variable by rule
 v2i = 0.005 1/(nM*minute)
 v2a = 0.25 1/(nM*minute)
 species: MPF = 0 nM
 APCi = 1 nM
 APCa = 0 nM
 AA = 100 nM [x]constant [x]boundary
algebraic rule: (v2i*APCi) + (v2a*APCa) - K2

Test the simulation with APCa = 1 and APCi = 0. Because the amount of APCa
(active) is high, K2 increases and the degradation starts to balance the synthesis of MPF.

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-42

Reaction 5, Deactivation of Active MPF

Active MPF (MPFp) is dephosphorylated on Thr-161 by an unknown phosphatase (PP) to
inactive MPF (MPF).

 reaction: MPFp -> MPF
reaction rate: kpp*[MPFp]
 parameters: kpp = 0.004 1/minute
 species: MPFp = 0 nM
 MPF = 0 nM

kcakr = 0.004 1/minute [Marlovits 1998, p. 175], but is renamed to kpp [Borisuk
1998].

Test simulation with APCa = 1 and APCi = 0. MPF increases without reaching steady
state.

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-43

Reaction 6, Activation of MPF

Inactive MPF (MPF) is phosphorylated on Thr-161 by an unknown cyclin activating kinase
(CAK).

 reaction: MPF -> MPFp
reaction rate: kcak*[MPF]
 parameters: kcak = 0.64 1/minute
 species: MPF = 0 nM
 MPFp = 0 nM

The kinase reaction that phosphorylates MPF to the active form is 160 times faster than
the phosphatase reaction that dephosphorylates active MPF.

Simulate the model with reactions 1 to 6. Notice that after adding reaction 6, most of the
product goes to active MPF (MPFp).

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-44

Reaction 7, Remove Inhibiting Phosphate from Inhibited MPF

Cdc25 phosphatase removes the inhibiting phosphate groups at the threonine 14 and
tyrosine 15 residues on Cdc2 kinase.

 reaction: pMPF -> MPF
reaction rate: Kcdc25*[pMPF]
 parameters: Kcdc25 = 0.0 1/minute or 0.017 1/minute, variable by
 algebraic rule
 V25i = 0.017 1/(mM*minute)
 V25a = 0.17 1/mM*minute
 species: pMPF = 0 nM
 MPF = 0 nM
 Cdc25 = 1 nM (inactive)
 Cdc25p = 0 nM (active)
algebraic rule: (V25i*Cdc25) + (V25a*Cdc25p) - Kcdc25

Initially, all of the Cdc25 phosphatase is in the inactive form (Cdc25).

Enter the initial value for Kcdc25 as 0.0 and let the first time step calculate the value
from the rule, or enter an initial value using the rule.

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-45

Initially, set ConstantAmount for Cdc25 and Cdc25p to test reactions 1 through 7. Then
after you can add the reactions to regulate the Cdc25 phosphatase by clearing the
ConstantAmount property.

Reaction 8, Inhibition of MPF by Phosphorylation

Addition of inhibiting phosphate groups by Wee1 kinase to inhibit active M-phase
promoting factor (MPF). Myt1 kinase is also involved with the phosphorylation, but its
contribution is grouped with Wee1.

 reaction: MPF -> pMPF
reaction rate: Kwee1*[MPF]
 parameters: Kwee1 = 0.0 1/minute or 0.01 1/minute, variable by
 algebraic rule
 Vwee1i = 0.01 1/(nM*minute)
 Vwee1a = 1.0 1/(nM*minute)
 species: MPF = 0 nM
 pMPF = 0 nM
 Wee1p = 1 nM (inactive)
 Wee1 = 0 nM (active)
algebraic rule: (Vwee1i*Wee1p) + (Vwee1a*Wee1) - Kwee1

The initial capitalization for the parameter Kwee1 is a convention to indicate that this
value changes during the simulation.

Test the simulation for reactions 1 through 8 with Wee1p (inactive) = 1 and Wee1
(active) = 0.

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-46

Test the simulation with Wee1p (inactive) = 0 and Wee1 (active) = 1.

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-47

Reaction 11, Degradation of Cyclin B on Inhibited MPF

Degradation of cyclin B (CycB) on inhibited MPF (pMPF). Cyclin B is tagged with ubiquitin
groups and degrades while bound to Cdc2.

 reaction: pMPF -> Cdc2 + AA
 reaction rate: K2*[pMPF] nM/minute
 parameters: K2 = 0 or 0.25 1/minute, variable by rule
 V2i = 0.005 1/nM*minute
 V2a = 0.25 1/nM*minute
 species: MPF = 0 nM
 APCi = 1 nM
 APCa = 0 nM
 AA = 100 nM [x]constant [x]boundary
 Cdc2 = 100 nm
algebraic rule: (V2i*APCi) + (V2a*APCa) - K2

Test the simulation with Wee1 active (Wee1 = 1) and APC active (APCi = 1).

Reaction 12, Deactivation of MPF to Inhibited MPF

Inhibited/active MPF (pMPFp) is dephosphorylated on Thr-161 by an unknown
phosphatase (PP) to inhibited MPF (pMPF). Compare reaction 12 with reaction 5 on page
B-43.

 reaction: pMPFp -> pMPF
reaction rate: kpp*[pMPFp]
 parameters: kpp = 0.004 1/minute
 species: pMPFp = 0 nM
 pMPF = 0 nM

Reaction 13, Activation of Inhibited MPF

Inhibited MPF (pMPF) is phosphorylated on Thr-161 by an unknown cyclin-activating
kinase (CAK). Compare reaction 13 with reaction 6 on page B-44.

 reaction: pMPF -> pMPFp
reaction rate: kcak*[pMPF] nM/minute
 parameters: kcak = 0.64 1/minute
 species: pMPF = 0 nM
 pMPFp = 0 nM

Test the simulation with Wee1p = 1 (inactive)/ Wee1 = 0 and then test with Wee1p = 0
(inactive)/ Wee1 = 1.

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-48

Reaction 15, Degradation of Cyclin B on Active but Inhibited MPF

Degradation of cyclin B (CycB) on inhibited MPF (pMPF). Cyclin B is tagged with ubiquitin
groups and degrades while bound to cdc2 kinase.

 reaction: pMPFp -> Cdc2 + AA
 reaction rate: K2*[pMPFp] nM/minute
 parameters: K2 = 0 or 0.25 1/minute, variable by rule
 v2i = 0.005 1/nM*minute
 v2a = 0.25 1/nM*minute
 species: MPF = 0 nM
 APCi = 1 nM
 APCa = 0 nM
 AA = 100 nM [x]constant [x]boundary
 Cdc2 = 100 nm
algebraic rule: (V2i*APCi) + (V2a*APCa) - K2

Reaction 16, Inhibit MPF by Phosphorylation

Addition of inhibiting phosphate groups by Wee1 kinase to inhibit active M-phase
promoting factor (MPF). Myt1 kinase is also involved with the phosphorylation, but its
contribution is grouped with Wee1.

 reaction: MPFp -> pMPFp
 reaction rate: Kwee1*[MPFp] nM/minute
 parameters: Kwee1 = 1/minute []constant, variable by rule
 Vweei = 0.01 1/nM*minute
 Vweea = 1 1/nM*minute
 species: MPFp = 0 nM
 pMPFp = 0 nM
 Wee1p = 1 nM (inactive)
 Wee1 = 0 nM (active)
algebraic rule: (Vwee1i*Wee1p) + (Vwee1a*Wee1) - Kwee1

Reaction 17, Remove Inhibiting Phosphate from Activated MPF

Remove the inhibiting phosphate group from pMPFp with cdc25 phosphatase.

 reaction: pMPFp -> MPFp
reaction rate: Kcdc25*[pMPFp]
 parameters: Kcdc25 = 0 1/minue, []constant, variable by rule
 V25i = 0.017 1/nM*minute
 V25a = 0.17 1/nM*minute
 species: pMPFp = 0 nM
 MPFp = 0 nM

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-49

algebraic rule: (V25i*Cdc25) + (V25a*Cdc25p) - Kcdc25

Reaction 19, Degradation of Cyclin B on Activated MPF

Degradation of cyclin B (CycB) on inhibited MPF (pMPF). Cyclin B is tagged with ubiquitin
groups and degrades while bound to cdc2 kinase.

 reaction: MPFp -> MPF + AA
 reaction rate: K2*[MPFp] nM/minute
 parameters: K2 = 0 or 0.25 1/minute, variable by rule
 V2i = 0.005 1/nM*minute
 V2a = 0.25 1/nM*minute
 species: MPF = 0 nM
 MPFp = 0 nM
 APCi = 1 nM
 APCa = 0 nM
 AA = 100 nM [x]constant [x]boundary
 Cdc2 = 100 nm
algebraic rule: (V2i*APCi) + (V2a*APCa) - K2

Reaction 36, Activation of Cdc25 by Activated MPF

Activation of cdc25 phosphatase by phosphorylation with active M-phase promoting factor
(MPFp).

 reaction: Cdc25 + (MPFp) -> Cdc25p + (MPFp)
reaction rate: (k25*[MPFp]*[Cdc25])/(Km25 + [Cdc25])
 parameters: k25 = 0.02 1/minute
 Km25 = 0.1 nM
 species: Cdc25 = 1 nM (inactive)
 Cdc25p = 0 nM (active)

Initially MPF is inhibited (MPF* reacts to pMPF*).

Reaction 37, Deactivation of Cdc25

Deactivation of cdc25 phosphatase by dephosphorylation with an unknown phosphatase.

 reaction: Cdc25p -> Cdc25
reaction rate: (k25r*[Cdc25p])/(Km25r + [Cdc25p])
 parameters: k25r = 0.1 nM/minute
 Km25r = 1 nM
 species: Cdc25 = 1 nM (inactive)
 Cdc25p = 0 nM (active)

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-50

Reaction 38, Deactivation of Wee1 by Active MPF

Deactivation of Wee1 kinase by phosphorylation with active M-phase promoting factor
(MPFp).

 reaction: Wee1 + (MPFp) -> Wee1p + (MPFp)
reaction rate: (kw*[MPFp]*[Wee1])/(Kmw + [Wee1]) nM/minute
 parameters: kw = 0.02 1/minute
 Kmw = 0.1 nM
 species: Wee1p = 1 nM (inactive)
 Wee1 = 0 nM (active)

Initially MPF is inhibited (MPF* reacts to pMPF*).

Reaction 39, Activation of Wee1

Activation of Wee1 kinase by dephosphorylation with an unknown kinase.

 reaction: Wee1p -> Wee1
reaction rate: (kwr*[Wee1p])/(Kmwr + [Wee1p]) nM/minute
 parameters: kwr = 0.1 nM/minute
 Kmwr = 1 nM
 species: Wee1p = 1 nM (inactive)
 Wee1 = 0 nM (active)

Reaction 40, Activation of Intermediate Enzyme by Active MPF

The inactive intermediate enzyme (IE) is activated by phosphorylation with active M-
phase promoting factor (MPFp).

 reaction: IE + (MPFp) -> IEp + (MPFp)
reaction rate: (kie*[MPFp]*[IE])/(Kmie + [IE])
 parameters: kie = 0.02 1/minute
 Kmie = 0.01nM
 species: IE = 1 nM (inactive)
 IEp = 0 nM (active)

Reaction 41, Deactivation of IE

The active intermediate enzyme (IE) is deactivated by dephosphorylation.

 reaction: IEp -> IE
reaction rate: (kier*[IEp])/(Kmier + [IEp])
 parameters: kier = 0.15 nM/minute
 Kmier = 0.01 nM

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-51

 species: IE = 1 nM (inactive)
 IEp = 0 nM (active)

Reaction 42, APC Activation by IEp

Anaphase-promoting complex (APC) is activated by an active intermediate enzyme (IEp).

 reaction: APCi + IEp -> APCa + IEp
reaction rate: (kap*[IEp]*[APCi])/(Kmap + [APCi])
 parameters: kap = 0.13 1/minute
 Kmap = 0.01 nM
 species : APCi = 1 nM
 APCa = 0 nM

Reaction 43, APC Deactivation

Anaphase-promoting complex (APC) is deactivated.

 reaction: APCa -> APCi
reaction rate: (kapr*[APCa])/(Kmapr + [APCa])
 parameters: kapr = 0.13 nM/minute
 Kmapr = 1 nM
 species : APCi = 1 nM
 APCa = 0 nM

Block Diagram of the M-Phase Control Model with Reactions

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-52

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-53

B Model of M-Phase Control in Xenopus Oocyte Extracts

B-54

References

[1] Borisuk M, Tyson J (1998), “Bifurcation analysis of a model of mitotic control in frog
eggs,” Journal of Theoretical Biology, 195(1):69–85, PubMed 9802951.

[2] Marlovits G, Tyson C, Novak B, Tyson J (1998), “Modeling M-phase control in Xenopus
oocyte extracts: the surveillance mechanism for unreplicated DNA,” Biophysical
Chemistry, 72(1-2):169–184, PubMed 9652093.

[3] Novák B, Tyson J (1993), “Numerical analysis of a comprehensive model of M-phase
control in Xenopus oocyte extracts and intact embryos,” Journal of Cell Science,
106(4):1153–1168, PubMed 8126097.

 Model of M-Phase Control in Xenopus Oocyte Extracts

B-55

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9802951&dopt=Abstract
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9652093&dopt=Abstract
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8126097&dopt=Abstract

